WIRTSCHAFTSINFORMATIK

, Volume 56, Issue 1, pp 31–39 | Cite as

Energieinformatik

Aktuelle und zukünftige Forschungsschwerpunkte
  • Christoph Goebel
  • Hans-Arno Jacobsen
  • Victor del Razo
  • Christoph Doblander
  • Jose Rivera
  • Jens Ilg
  • Christoph Flath
  • Hartmut Schmeck
  • Christof Weinhardt
  • Daniel Pathmaperuma
  • Hans-Jürgen Appelrath
  • Michael Sonnenschein
  • Sebastian Lehnhoff
  • Oliver Kramer
  • Thorsten Staake
  • Elgar Fleisch
  • Dirk Neumann
  • Jens Strüker
  • Koray Erek
  • Rüdiger Zarnekow
  • Holger Ziekow
  • Jörg Lässig
Research Notes

Zusammenfassung

Aufgrund der zunehmenden Bedeutung einer nachhaltigen Energieerzeugung und eines sparsameren Verbrauchs hat sich die Energieinformatik (EI) zu einem florierenden Forschungsgebiet innerhalb der (Wirtschafts-)Informatik entwickelt. Der Beitrag versucht, dieses neue und dynamische Forschungsfeld durch die Beschreibung aktueller Themen und Methoden der Energieinformatikforschung zu charakterisieren, und gibt einen Ausblick auf die mögliche zukünftige Entwicklung. Zwei generelle Forschungsfragen haben bislang die meiste Aufmerksamkeit auf sich gezogen und werden die EI-Forschungsagenda wahrscheinlich auch in den nächsten Jahre dominieren: Wie kann Informations- und Kommunikationstechnologie (IKT) dabei helfen, (1) die Energieeffizienz zu erhöhen und (2) dezentrale erneuerbare Energiequellen in das Stromnetz zu integrieren. Die Autoren stellen ausgewählte Forschungsarbeiten aus dem EI-Bereich vor und zeigen, wie diese Forschungsfragen in konkrete Forschungsprojekte münden und wie EI-Forscher Beiträge auf der Grundlage ihres jeweiligen akademischen Hintergrundes erbracht haben.

Schlüsselwörter

Erneuerbare Energien Energieeffizienz Energieproportionalität cyber-physikalische Systeme intelligente energiesparende Systeme Smart Grids Energieinformatik 

Energy Informatics

Current and Future Research Directions

Abstract

Due to the increasing importance of producing and consuming energy more sustainably, Energy Informatics (EI) has evolved into a thriving research area within the CS/IS community. The article attempts to characterize this young and highly dynamic field of research by describing current EI research topics and methods and provides an outlook of how the field might evolve in the future. It is shown that two general research questions have received the most attention so far and are likely to dominate the EI research agenda in the coming years: How to leverage information and communication technology (ICT) to (1) improve energy efficiency, and (2) to integrate decentralized renewable energy sources into the power grid. Selected EI streams are reviewed, highlighting how the respective research questions are broken down into specific research projects and how EI researchers have made contributions based on their individual academic background.

Keywords

Renewable energy Energy efficiency Power-proportionality Cyber-physical systems Smart energy-saving systems Smart grids Energy informatics 

Literatur

  1. Appelrath H-J, Kagermann H, Mayer C (Hrsg) (2012) Future Energy Grid – Migrationspfade ins Internet der Energie. Springer, Heidelberg Google Scholar
  2. Ahn C, Li C-T, Peng H (2011) Optimal decentralized charging control algorithm for electrified vehicles connected to smart grid. Journal of Power Sources 196(23):10369–10379 CrossRefGoogle Scholar
  3. Anders G, Hinrichs C, Siefert F, Behrmann P, Reif W, Sonnenschein M (2012) On the influence of inter-agent variation on multi-agent algorithms solving a dynamic task allocation problem under uncertainty. In: Proc of 6th IEEE international conference on self-adaptive and self-organizing systems (SASO), Lyon Google Scholar
  4. Aswani A, Master N, Taneja J, Culler D, Tomlin C (2011) Reducing transient and steady state electricity consumption in HVAC using learning-based model predictive control. Proceedings of the IEEE 100(1):240–253 CrossRefGoogle Scholar
  5. Bodenstein C, Schryen G, Neumann D (2012) Energy-aware workload management models for operating cost reduction in data centers. European Journal of Operational Research 222(1):157–167 CrossRefGoogle Scholar
  6. Callaway DS, Hiskens IA (2011) Achieving controllability of electric loads. Proceedings of the IEEE 99(1):184–199 CrossRefGoogle Scholar
  7. Dawson-Haggerty S, Jiang X, Tolle G, Ortiz J, Culler D (2010) SMAP – a simple measurement and actuation profile for physical information. In: Proc of 8th ACM conference on embedded networked sensor systems (SenSys), Zurich Google Scholar
  8. Feldmeier M, Paradiso JA (2010) Personalized HVAC control system. In: Proc of internet of things (IoT) 2010, Tokyo Google Scholar
  9. Feueriegel S, Strüker J, Neumann D (2012) Reducing price uncertainty through demand side management. In: Proc of international conference on information systems (ICIS), Orlando Google Scholar
  10. Flath CM, Gottwalt S, Ilg JP (2012a) A revenue management approach for efficient electric vehicle charging. In: Proc of 45th Hawaii international conference on system sciences, Hawaii Google Scholar
  11. Flath CM, Nicolay D, Conte T, van Dinther C, Filipova-Neumann L (2012b) Cluster analysis of smart metering data. Business Information Systems Engineering 4(1):31–39 CrossRefGoogle Scholar
  12. Gan L, Topcu U, Low S (2007) Optimal decentralized protocols for electric vehicle charging. IEEE Transactions on Power Systems 6(1):1–10 Google Scholar
  13. Goebel C (2012) On the business value of ICT-controlled plug-in electric vehicle charging in California. Energy Policy 53:1–10 CrossRefGoogle Scholar
  14. Goebel C, Callaway DS (2013) Using ICT-controlled plug-in electric vehicles to supply grid regulation in California at different renewable integration levels. IEEE Transactions on Smart Grid 4(2):729–740 CrossRefGoogle Scholar
  15. Gottwalt S, Ketter W, Block C, Collins J, Weinhardt C (2011) Demand side management – a simulation of household behavior under variable prices. Energy Policy 39(12):8163–8174 CrossRefGoogle Scholar
  16. Grimm D, Loeser F, Erek K, Zarnekow R (2012) Evaluation von Performance Measurement Systemen zur Konzeption eines geschäftsprozessorientierten Management-Cockpits für IKT-Energieeffizienz. In: Informatik 2012 – Workshop Informatik und Nachhaltigkeitsmanagement, Braunschweig Google Scholar
  17. Hinrichs C, Vogel U, Sonnenschein M (2009) Modelling and evaluation of desynchronization strategies for controllable cooling devices. In: Proc of 6th Vienna international conference on mathematical modelling, Vienna Google Scholar
  18. Hinrichs C, Vogel U, Sonnenschein M (2011) Approaching decentralized demand side management via self-organizing agents. In: Proc of 10th international conference on autonomous agents and multiagent systems (AAMAS) Taipei Google Scholar
  19. Hoyer M (2011) Resource management in virtualized data centers regarding performance and energy aspects. PhD thesis, University of Oldenburg Google Scholar
  20. Jacobsen H-A, Muthusamy V (2011) Green middleware. In: Green IT: technologies and applications. Springer, Berlin, S 341–361 CrossRefGoogle Scholar
  21. Khurana H, Hadley M, Lu N, Frincke DA (2010) Smart-grid security issues. IEEE Security and Privacy 8(1):81–85 CrossRefGoogle Scholar
  22. Kramer O, Gieseke F, Satzger B (2013) Wind energy prediction and monitoring with neural computation. Journal Neurocomputing 109:84–93 CrossRefGoogle Scholar
  23. Krioukov A, Mohan P, Alspaugh S, Keys L, Culler D, Katz R (2010) NapSAC: design and implementation of a power-proportional web cluster. In: Proc of 1st ACM SIGCOMM workshop on green networking, New Delhi Google Scholar
  24. Krioukov A, Dawson-Haggerty S, Lee L, Culler D (2011) A living laboratory study in personalized automated lighting controls. In: Proc of 3rd ACM workshop on embedded sensing systems for energy-efficiency in buildings (BuiSys), Seattle Google Scholar
  25. Lin M, Wierman A, Andrew LLH, Thereska E (2011) Dynamic right-sizing for power-proportional data centers. In: Proc of 30th IEEE international conference on computer communications (INFOCOM), Shanghai Google Scholar
  26. Loeser F, Erek K, Zarnekow R (2012) Towards a typology of green is strategies: insights from case study research. In: Proc of 32nd international conference on information systems, Orlando Google Scholar
  27. Loock C-M, Staake T, Landwehr J (2011) Green IS design and energy conservation: an empirical investigation of social normative feedback. In: Proc of 31st international conference on information systems (ICIS), Shanghai Google Scholar
  28. Loock C, Staake T, Thiesse F (2013) Motivating energy-efficient behavior with green IS: an investigation of goal setting and the role of defaults. MIS Quarterly 37(4):1313–1332 Google Scholar
  29. Ma Z, Callaway DS, Hiskens IA (2013) Decentralized charging control of large populations of plug-in electric vehicles. IEEE Transactions on Control Systems Technology 21(1):67–78 CrossRefGoogle Scholar
  30. Mathieu JL, Callaway DS (2012) State estimation and control of heterogeneous thermostatically controlled loads for load following. In: Proc of 45th Hawaii international conference on system science (HICSS), Hawaii Google Scholar
  31. McKay D (2008) Sustainable energy without the hot air. UIT, Cambridge Google Scholar
  32. Mültin M, Allerding F, Schmeck H (2012) Integration of electric vehicles in smart homes – an ICT-based solution for V2G scenarios. In: Proc of 2012 IEEE PES innovative smart grid technologies conference, Washington, DC Google Scholar
  33. NEST (2012) In: NEST – the learning thermostat. http://www.nest.com/. Abruf am 2012-01
  34. Oldewurtel F, Ulbig A, Morari M, Andersson G (2011) Building control and storage management with dynamic tariffs for shaping demand response. In: IEEE PES conference on innovative smart grid technologies (ISGT) Europe, Manchester Google Scholar
  35. Olken F, Jacobsen H-A, McParland C, Piette MA, Anderson MF (1998) Object lessons learned from a distributed system for building monitoring and operation. In: Proc of object oriented programming systems languages and applications (OOPSLA), Vancouver Google Scholar
  36. Ramchurn SD, Vytelingum P, Rogers A, Jennings NR (2012) Putting the ‘smarts’ into the smart grid: a grand challenge for artificial intelligence. Communications of the ACM 55(4):86–97 CrossRefGoogle Scholar
  37. Schlitter N, Lässig J (2012) Distributed privacy preserving classification based on local cluster identifiers. In: Proc of 11th IEEE international conference on trust, security and privacy in computing and communications, Liverpool Google Scholar
  38. Schuller A, Ilg J, van Dinther C (2012) Benchmarking electric vehicle charging control strategies. In: Proc of 2012 IEEE PES innovative smart grid technologies (ISGT), Washington, DC Google Scholar
  39. Stadler M, Krause W, Sonnenschein M, Vogel U (2009) Modelling and evaluation of control schemes for enhancing load shift of electricity demand for cooling devices. Environmental Modelling and Software 24(2):285–295 CrossRefGoogle Scholar
  40. Strüker J, Kerschbaum F (2012) From a barrier to a bridge: data-privacy in deregulated smart grids. In: Proc of 32nd international conference on information systems (ICIS), Orlando Google Scholar
  41. Strüker J, van Dinther C (2012) Demand response in smart grids: research opportunities for the IS discipline. In: Proc of 18th Americas conference on information systems (AMCIS), Seattle Google Scholar
  42. Watson RT, Boudreau M-C, Chen AJ (2010) Information systems and environmentally sustainable development: energy informatics and new directions for the IS community. MIS Quarterly 34(1):23–38 Google Scholar
  43. Weiss M, Loock C-M, Staake T, Mattern F, Fleisch E (2010) Evaluating mobile phones as energy consumption feedback devices. In: Proc of 7th international ICST conference on mobile and ubiquitous systems, Sydney Google Scholar
  44. Weiss M, Staake T, Mattern F (2012) Leveraging smart meter data to recognize home appliances. In: Proc of IEEE pervasive computing and communication (PerCom), Lugano Google Scholar

Copyright information

© Springer Fachmedien Wiesbaden 2013

Authors and Affiliations

  • Christoph Goebel
    • 1
  • Hans-Arno Jacobsen
    • 1
  • Victor del Razo
    • 1
  • Christoph Doblander
    • 1
  • Jose Rivera
    • 1
  • Jens Ilg
    • 2
  • Christoph Flath
    • 2
  • Hartmut Schmeck
    • 2
  • Christof Weinhardt
    • 2
  • Daniel Pathmaperuma
    • 2
  • Hans-Jürgen Appelrath
    • 3
    • 4
  • Michael Sonnenschein
    • 3
    • 4
  • Sebastian Lehnhoff
    • 3
    • 4
  • Oliver Kramer
    • 3
    • 4
  • Thorsten Staake
    • 5
  • Elgar Fleisch
    • 6
    • 7
  • Dirk Neumann
    • 8
  • Jens Strüker
    • 9
  • Koray Erek
    • 10
  • Rüdiger Zarnekow
    • 10
  • Holger Ziekow
    • 11
  • Jörg Lässig
    • 12
  1. 1.Technische Universität MünchenMünchenDeutschland
  2. 2.Karlsruher Institut für TechnologieKarlsruheDeutschland
  3. 3.Universität OldenburgOldenburgDeutschland
  4. 4.OFFISOldenburgDeutschland
  5. 5.Universität BambergBambergDeutschland
  6. 6.ETH ZürichZürichSchweiz
  7. 7.Universität St. GallenSt. GallenSchweiz
  8. 8.Universität FreiburgFreiburgDeutschland
  9. 9.Hochschule FreseniusIdsteinDeutschland
  10. 10.Technische Universität BerlinBerlinDeutschland
  11. 11.AGT InternationalDarmstadtDeutschland
  12. 12.University of Applied Sciences Zittau/GörlitzGörlitzDeutschland

Personalised recommendations