Technostress aus einer neurobiologischen Perspektive

Systemabsturz führt bei Computerbenutzern zu einem Anstieg des Stresshormons Kortisol

Technostress from a Neurobiological Perspective

System Breakdown Increases the Stress Hormone Cortisol in Computer Users

Zusammenfassung

Trotz des positiven Einflusses von Informations- und Kommunikationstechnologien (IKT) auf einer Individual-, Organisations- und Gesellschaftsebene (z. B. verbesserter Zugang zu Informationen, erhöhte Effizienz und Produktivität) zeigen sowohl die wissenschaftliche Forschung als auch Einzelberichte aus der Praxis, dass die Mensch-Computer-Interaktion zu beträchtlichen Stresswahrnehmungen bei Benutzern führen kann. Diese Art von Stress wird als Technostress bezeichnet. Eine Analyse der Fachliteratur zeigt, dass die meisten Studien bislang Fragebögen verwendet haben, um die Eigenschaften, Ursachen und Auswirkungen von Technostress zu untersuchen. Trotz des Erkenntniswerts dieser vielen Fragebogenstudien nehmen wir eine andere konzeptionelle Perspektive ein, nämlich jene der Neurobiologie. Wir berichten über ein Laborexperiment, indem wir die Auswirkungen eines Systemabsturzes auf die Veränderungen im Kortisolspiegel von Benutzern untersuchten – Kortisol ist ein bedeutendes Stresshormon im menschlichen Körper. Die Ergebnisse unserer Studie zeigen, dass der Kortisolspiegel signifikant ansteigt, wenn ein System bei Ausführung einer Mensch-Computer-Interaktionsaufgabe abstürzt. Auf Basis dieses Ergebnisses ergeben sich bedeutende Implikationen für Forschung, Entwicklung und Management von IKT, und nicht zuletzt auch für die Gesundheitspolitik. Wir bestätigen den Erkenntniswert eines Forschungsansatzes, der bislang in IKT-Disziplinen weitgehend vernachlässigt wurde (insbesondere in der Wirtschaftsinformatik sowie in der Information-Systems-Disziplin (IS)). Wir argumentieren im Beitrag, dass die zukünftige Forschung im Bereich der Mensch-Computer-Interaktion die neurobiologische Perspektive als erkenntnisfördernden komplementären Ansatz zu den traditionellen Konzepten betrachten sollte.

Abstract

Despite the positive impact of information and communication technology (ICT) on an individual, organizational, and societal level (e.g., increased access to information, as well as enhanced performance and productivity), both scientific research and anecdotal evidence indicate that human-machine interaction, both in a private and organizational context, may lead to notable stress perceptions in users. This type of stress is referred to as technostress. A review of the literature shows that most studies used questionnaires to investigate the nature, antecedents, and consequences of technostress. Despite the value of the vast amount of questionnaire-based technostress research, we draw upon a different conceptual perspective, namely neurobiology. Specifically, we report on a laboratory experiment in which we investigated the effects of system breakdown on changes in users’ levels of cortisol, which is a major stress hormone in humans. The results of our study show that cortisol levels increase significantly as a consequence of system breakdown in a human-computer interaction task. In demonstrating this effect, our study has major implications for ICT research, development, management, and health policy. We confirm the value of a category of research heretofore largely neglected in ICT-related disciplines (particularly in business and information systems engineering, BISE, as well as information systems research, ISR), and argue that future research investigating human-machine interactions should consider the neurobiological perspective as a valuable complement to traditional concepts.

This is a preview of subscription content, log in to check access.

Abb. 1
Abb. 2
Abb. 3
Abb. 4

Literatur

  1. Ayyagari R, Grover V, Purvis R (2011) Technostress: technological antecedents and implications. MIS Quarterly 35(4):831–858

    Google Scholar 

  2. Becker BJ (1988) Synthesizing standardized mean-change measures. British Journal of Mathematical and Statistical Psychology 41(2):257–278

    Article  Google Scholar 

  3. Benbasat I, Dimoka A, Pavlou PA, Qiu L (2010) Incorporating social presence in the design of the anthropomorphic interface of recommendation agents: insights from an fMRI study. In: Proc 31st international conference on information systems, St. Louis, S 1–22

    Google Scholar 

  4. Boucsein W (2009) Forty years of research on system response times – what did we learn from it. In: Schlick CM (Hrsg) Methods and tools of industrial engineering and ergonomics. Springer, Berlin, S 575–593

    Google Scholar 

  5. Brillhart PE (2004) Technostress in the workplace: managing stress in the electronic workplace. Journal of American Academy of Business 5(1):302–307

    Google Scholar 

  6. Brod C (1984) Technostress: The human cost of the computer revolution. Addison-Wesley, Reading

    Google Scholar 

  7. Brynjolfsson E (1996) The contribution of information technology to consumer welfare. Information Systems Research 7(3):281–300

    Article  Google Scholar 

  8. Brynjolfsson E, Hitt LM (2000) Beyond computation: information technology, organizational transformation and business performance. Journal of Economic Perspectives 14(4):23–48

    Article  Google Scholar 

  9. Byrne EA, Parasuraman R (1996) Psychophysiology and adaptive automation. Biological Psychology 42(3):249–268

    Article  Google Scholar 

  10. Cohen S, Kamarck T, Mermelstein R (1983) A global measure of perceived stress. Journal of Health and Social Behavior 24(4):385–396

    Article  Google Scholar 

  11. Day A, Scott N, Kelloway EK (2010) Information and communication technology: implications for job stress and employee well-being. In: Perrewé P, Ganster D (Hrsg) Research in occupational stress and well being, Bd 8, S 317–350

    Google Scholar 

  12. De Kloet RE, Joels M, Holsboer F (2005) Stress and the brain: from adaptation to disease. Nature Reviews Neuroscience 6(6):463–475

    Article  Google Scholar 

  13. Desmond JE, Glover GH (2002) Estimating sample size in functional MRI (fMRI) neuroimaging studies: statistical power analyses. Journal of Neuroscience Methods 118(2):115–128

    Article  Google Scholar 

  14. Dickerson SS, Kemeny ME (2004) Acute stressors and cortisol responses: a theoretical integration and synthesis of laboratory research. Psychological Bulletin 130(3):355–391

    Article  Google Scholar 

  15. Dimoka A (2010) What does the brain tell us about trust and distrust? Evidence from a functional neuroimaging study. MIS Quarterly 34(2):373–396

    Google Scholar 

  16. Dimoka A, Banker RD, Benbasat I, Davis FD, Dennis AR, Gefen D, Gupta A, Ischebeck A, Kenning P, Müller-Putz G, Pavlou PA, Riedl R, vom Brocke J, Weber B (2012) On the use of neurophysiological tools in IS research: developing a research agenda for NeuroIS. MIS Quarterly, in press. http://www.misq.org/forthcoming/

  17. Dimoka A, Davis FD (2008) Where does TAM reside in the brain? The neural mechanisms underlying technology adoption. In: Proc 29th international conference on information systems, Paris, S 1–18

    Google Scholar 

  18. Foley P, Kirschbaum C (2010) Human hypothalamus-pituitary-adrenal axis responses to acute psychosocial stress in laboratory settings. Neuroscience and Biobehavioral Reviews 35(1):91–96

    Article  Google Scholar 

  19. Gao Y, Barreto A, Zhai J, Rishe N (2007) Digital filtering of pupil diameter variations for the detection of stress in computer users. In: Proc 11th world multi-conference on systemics, cybernetics and informatics, Orlando, S 30–35

    Google Scholar 

  20. Gartner Group (2008) Gartner says more than 1 billion PCs in use worldwide and headed to 2 billion units by 2014. http://www.gartner.com/it/page.jsp?id=703807. Abruf am 2011-04-21

  21. Hancock PA, Szalma JL (2008) Stress and neuroergonomics. In: Parasuraman R, Rizzo M (Hrsg) Neuroergonomics: the brain at work. Oxford University, New York, S 195–206

    Google Scholar 

  22. Het S, Ramlow G, Wolf OT (2005) A meta-analytic review of the effects of acute cortisol administration on human memory. Psychoneuroendocrinology 30(8):771–784

    Article  Google Scholar 

  23. Hudiburg RA (1989) Psychology of computer user: XVII. The computer technology hassles scale: revision, reliability, and some correlates. Psychological Reports 65(3):1387–1394

    Article  Google Scholar 

  24. Hudiburg RA (1995) Psychology of computer user: XXXIV. The computer technology hassles scale: subscales, norms, and reliability. Psychological Reports 77(3):779–782

    Article  Google Scholar 

  25. Hudiburg RA, Necessary JR (1996) Coping with computer-stress. Journal of Educational Computing Research 15(2):113–124

    Article  Google Scholar 

  26. Hung WH, Chang LM, Lin CH (2011) Managing the risk of overusing mobile phones in the working environment: a study of ubiquitous technostress. In: Proc 15th pacific Asia conference on information systems, Brisbane, S 1–12

    Google Scholar 

  27. Huston TL, Galletta DF, Huston JL (1993) The effects of computer monitoring on employee performance and stress: results of two experimental studies. In: Proc 26th annual Hawaii international conference on systems sciences, Maui, Hawaii, S 568–574

    Google Scholar 

  28. Internet World Stats (2010) Internet usage statistics: the Internet big picture. http://www.internetworldstats.com/stats.htm. Abruf am 2011-04-21

  29. Keeney RL (1999) The value of Internet commerce to the customer. Management Science 45(4):533–542

    Article  Google Scholar 

  30. Kolb B, Whishaw IQ (2009) Fundamentals of human neuropsychology, 6. Aufl. Worth, New York

    Google Scholar 

  31. Korunka C, Huemer KH, Litschauer B, Karetta B, Kafka-Lützow A (1996) Working with new technologies: hormone excretion as an indicator for sustained arousal: a pilot study. Biological Psychology 42(3):439–452

    Article  Google Scholar 

  32. Lazarus RS (1993) From psychological stress to the emotions: a history of changing outlooks. Annual Review of Psychology 44(1):1–21

    Article  Google Scholar 

  33. Lazarus RS, Folkman S (1984) Stress, appraisal, and coping. Springer, New York

    Google Scholar 

  34. Lieberman MD, Berkman ET, Wager TD (2009) Correlations in social neuroscience aren’t voodoo. Perspectives on Psychological Science 4(3):299–307

    Article  Google Scholar 

  35. Loos P, Riedl R, Müller-Putz GR, vom Brocke J, Davis FD, Banker RD, Léger PM (2010) NeuroIS: neuroscientific approaches in the investigation and development of information systems. Business & Information Systems Engineering 2(6):395–401

    Article  Google Scholar 

  36. McEwen BS (2006) Protective and damaging effects of stress mediators: central role of the brain. Dialogues in Clinical Neuroscience 8(4):367–381

    Google Scholar 

  37. Melamed S, Ugarten U, Shirom A, Kahana L, Lerman Y, Froom P (1999) Chronic burnout, somatic arousal and elevated salivary cortisol levels. Journal of Psychosomatic Research 46(6):591–598

    Article  Google Scholar 

  38. Nater UM, Okere U, Stallkamp R, Moor C, Ehlert U, Kliegel M (2006) Psychosocial stress enhances time-based prospective memory in healthy young men. Neurobiology of Learning and Memory 86(3):344–348

    Article  Google Scholar 

  39. Parasuraman R, Rizzo M (2008) Neuroergonomics: the brain at work. Oxford University, New York

    Google Scholar 

  40. Picard RW (1997) Affective computing. MIT, Cambridge

    Google Scholar 

  41. Picard RW (2003) Affective computing: challenges. International Journal of Human-Computer Studies 59(1–2):55–64

    Article  Google Scholar 

  42. Ragu-Nathan TS, Tarafdar M, Ragu-Nathan BS, Tu Q (2008) The consequences of technostress for end users in organizations: conceptual development and empirical validation. Information Systems Research 19(4):417–433

    Article  Google Scholar 

  43. Reuter M (2002) Impact of cortisol on emotions under stress and nonstress conditions: a pharmacopsychological approach. Neuropsychobiology 46(1):41–48

    Article  Google Scholar 

  44. Riedl R, Hubert M, Kenning P (2010a) Are there neural gender differences in online trust? An fMRI study on the perceived trustworthiness of eBay offers. MIS Quarterly 34(2):397–428

    Google Scholar 

  45. Riedl R, Banker RD, Benbasat I, Davis FD, Dennis AR, Dimoka A, Gefen D, Gupta A, Ischebeck A, Kenning P, Müller-Putz G, Pavlou PA, Straub DW, vom Brocke J, Weber B (2010b) On the foundations of NeuroIS: reflections on the Gmunden Retreat 2009. Communications of the AIS 27(1):243–264

    Google Scholar 

  46. Riedl R, Mohr P, Kenning P, Davis FD, Heekeren H (2011) Trusting humans and avatars: behavioral and neural evidence. In: Proc 32nd international conference on information systems, Shanghai, S 1–23

    Google Scholar 

  47. Schultheiss OC, Stanton SJ (2009) Assessment of salivary hormones. In: Harmon-Jones E, Beer JS (Hrsg) Methods in social neuroscience, Guilford, New York, S 17–44

    Google Scholar 

  48. Selye H (1946) The general adaptation syndrome and the diseases of adaptation. Journal of Clinical Endocrinology & Metabolism 6(2):117–230

    Article  Google Scholar 

  49. Society for Neuroscience (2008) Brain facts: a primer on the brain and nervous system. http://www.sfn.org/skins/main/pdf/brainfacts/2008/brain_facts.pdf. Abruf am 2011-02-21

  50. Takahashi T (2005) Social memory, social stress, and economic behaviors. Brain Research Bulletin 67(5):398–402

    Article  Google Scholar 

  51. Takahashi T, Ikeda K, Ishikawa M, Kitamura N, Tsukasaki T, Nakama D, Kameda T (2005) Anxiety, reactivity, and social stress-induced cortisol elevations in humans. Neuroendocrinology Letters 26(4):351–354

    Google Scholar 

  52. Tarafdar M, Tu Q, Ragu-Nathan BS, Ragu-Nathan TS (2007) The impact of technostress on role stress and productivity. Journal of Management Information Systems 24(1):301–328

    Article  Google Scholar 

  53. Tarafdar M, Tu Q, Ragu-Nathan TS (2010) Impact of technostress on end-user satisfaction and performance. Journal of Management Information Systems 27(3):303–334

    Article  Google Scholar 

  54. Tarafdar M, Pullins E, Ragu-Nathan TS (2011a) Examining impacts of technostress on the professional salesperson’s performance. In: Proc 17th Americas conference on information systems, Detroit, S 1–13

    Google Scholar 

  55. Tarafdar M, Tu Q, Ragu-Nathan TS, Ragu-Nathan BS (2011b) Crossing to the dark side: examining creators, outcomes, and inhibitors of technostress. Communications of the ACM 54(9):113–120

    Article  Google Scholar 

  56. Trimmel M, Meixner-Pendleton M, Haring S (2003) Stress response caused by system response time when searching for information on the Internet. Human Factors 45(4):615–621

    Article  Google Scholar 

  57. Tsigos C, Chrousos GP (2002) Hypothalamic-pituitary-adrenal axis, neuroendocrine factors and stress. Journal of Psychosomatic Research 53(4):865–871

    Article  Google Scholar 

  58. Tu Q, Wang K, Shu Q (2005) Computer-related technostress in China. Communications of the ACM 48(4):77–81

    Article  Google Scholar 

  59. Turner JA, Karasek RA (1984) Software ergonomics: effects of computer application design parameters on operator task performance and health. Ergonomics 27(6):663–690

    Article  Google Scholar 

  60. Van Eck M, Berkhof H, Nicolson N, Sulon J (1996) The effects of perceived stress, traits, mood states, and stressful daily events on salivary cortisol. Psychosomatic Medicine 58(5):447–458

    Google Scholar 

  61. Vedhara K, Hyde J, Gilchrist ID, Tytherleigh M, Plummer S (2000) Acute stress, memory, attention and cortisol. Psychoneuroendocrinology 25(6):535–549

    Article  Google Scholar 

  62. Vedhara K, Miles J, Bennett P, Plummer S, Tallon D, Brooks E, Gale L, Munnoch K, Schreiber-Kounine C, Fowler C, Lightman S, Sammon A, Rayter Z, Farndon J (2003) An investigation into the relationship between salivary cortisol, stress, anxiety and depression. Biological Psychology 62(2):89–96

    Article  Google Scholar 

  63. Walker BR (2007) Glucocorticoids and cardiovascular disease. European Journal of Endocrinology 157(5):545–559

    Article  Google Scholar 

  64. Wang K, Shu Q, Tu Q (2008) Technostress under different organizational environments: an empirical investigation. Computers in Human Behavior 24(6):3002–3013

    Article  Google Scholar 

  65. Wastell DG, Newman M (1996) Stress, control and computer system design: a psychophysiological field study. Behaviour & Information Technology 15(3):183–192

    Article  Google Scholar 

  66. Weil MM, Rosen LD (1997) Technostress: coping with technology @work @home @play. Wiley, New York

    Google Scholar 

  67. Zhai J, Barreto A, Chin C, Li C (2005) User stress detection in human-computer interactions. Biomedical Sciences Instrumentation 41(2):277–286

    Google Scholar 

Download references

Danksagung

Wir bedanken uns bei den Teilnehmern des Gmunden Retreat on NeuroIS 2011 (http://www.NeuroIS.org) für ihre nützlichen Kommentare zu einer früheren Version dieses Manuskripts. Darüber hinaus schätzen wir die Unterstützung durch das Auslandsbüro der Universität Linz, das eine Präsentation zum gegenständlichen Forschungsprojekt von René Riedl an der HEC Montréal gefördert hat. Weiter bedanken wir uns bei den wissenschaftlichen Mitarbeitern des Department of Information Technologies an der HEC Montréal, die Vorschläge unterbreitet haben, die zur Verbesserung des Artikels beigetragen haben. Schließlich wollen wir uns beim verantwortlichen Herausgeber, Armin Heinzl, sowie drei anonymen Gutachtern für ihre exzellenten Kommentare bedanken, die Möglichkeiten zur Verbesserung des Manuskripts aufgezeigt haben.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Prof. Dr. René Riedl.

Additional information

Angenommen nach zwei Überarbeitungen durch Prof. Dr. Heinzl.

This article is also available in English via http://www.springerlink.com and http://www.bise-journal.org: Riedl R, Kindermann H, Auinger A, Javor A (2012) Technostress from a Neurobiological Perspective. System Breakdown Increases the Stress Hormone Cortisol in Computer Users. Bus Inf Syst Eng. doi: 10.1007/s12599-012-0207-7.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Riedl, R., Kindermann, H., Auinger, A. et al. Technostress aus einer neurobiologischen Perspektive. Wirtschaftsinf 54, 59–68 (2012). https://doi.org/10.1007/s11576-012-0314-6

Download citation

Schlüsselwörter

  • Kortisol
  • Hormon
  • Hypothalamus-Hypophyse-Nebennieren-Achse
  • Neurobiologie
  • NeuroIS
  • Stressor
  • Systemabsturz
  • Technostress

Keywords

  • Cortisol
  • Hormone
  • Hypothalamic-Pituitary-Adrenal (HPA) axis
  • Neurobiology
  • NeuroIS
  • Stressor
  • System breakdown
  • Technostress