WIRTSCHAFTSINFORMATIK

, Volume 54, Issue 2, pp 59–68 | Cite as

Technostress aus einer neurobiologischen Perspektive

Systemabsturz führt bei Computerbenutzern zu einem Anstieg des Stresshormons Kortisol
  • René Riedl
  • Harald Kindermann
  • Andreas Auinger
  • Andrija Javor
Aufsatz

Zusammenfassung

Trotz des positiven Einflusses von Informations- und Kommunikationstechnologien (IKT) auf einer Individual-, Organisations- und Gesellschaftsebene (z. B. verbesserter Zugang zu Informationen, erhöhte Effizienz und Produktivität) zeigen sowohl die wissenschaftliche Forschung als auch Einzelberichte aus der Praxis, dass die Mensch-Computer-Interaktion zu beträchtlichen Stresswahrnehmungen bei Benutzern führen kann. Diese Art von Stress wird als Technostress bezeichnet. Eine Analyse der Fachliteratur zeigt, dass die meisten Studien bislang Fragebögen verwendet haben, um die Eigenschaften, Ursachen und Auswirkungen von Technostress zu untersuchen. Trotz des Erkenntniswerts dieser vielen Fragebogenstudien nehmen wir eine andere konzeptionelle Perspektive ein, nämlich jene der Neurobiologie. Wir berichten über ein Laborexperiment, indem wir die Auswirkungen eines Systemabsturzes auf die Veränderungen im Kortisolspiegel von Benutzern untersuchten – Kortisol ist ein bedeutendes Stresshormon im menschlichen Körper. Die Ergebnisse unserer Studie zeigen, dass der Kortisolspiegel signifikant ansteigt, wenn ein System bei Ausführung einer Mensch-Computer-Interaktionsaufgabe abstürzt. Auf Basis dieses Ergebnisses ergeben sich bedeutende Implikationen für Forschung, Entwicklung und Management von IKT, und nicht zuletzt auch für die Gesundheitspolitik. Wir bestätigen den Erkenntniswert eines Forschungsansatzes, der bislang in IKT-Disziplinen weitgehend vernachlässigt wurde (insbesondere in der Wirtschaftsinformatik sowie in der Information-Systems-Disziplin (IS)). Wir argumentieren im Beitrag, dass die zukünftige Forschung im Bereich der Mensch-Computer-Interaktion die neurobiologische Perspektive als erkenntnisfördernden komplementären Ansatz zu den traditionellen Konzepten betrachten sollte.

Schlüsselwörter

Kortisol Hormon Hypothalamus-Hypophyse-Nebennieren-Achse Neurobiologie NeuroIS Stressor Systemabsturz Technostress 

Technostress from a Neurobiological Perspective

System Breakdown Increases the Stress Hormone Cortisol in Computer Users

Abstract

Despite the positive impact of information and communication technology (ICT) on an individual, organizational, and societal level (e.g., increased access to information, as well as enhanced performance and productivity), both scientific research and anecdotal evidence indicate that human-machine interaction, both in a private and organizational context, may lead to notable stress perceptions in users. This type of stress is referred to as technostress. A review of the literature shows that most studies used questionnaires to investigate the nature, antecedents, and consequences of technostress. Despite the value of the vast amount of questionnaire-based technostress research, we draw upon a different conceptual perspective, namely neurobiology. Specifically, we report on a laboratory experiment in which we investigated the effects of system breakdown on changes in users’ levels of cortisol, which is a major stress hormone in humans. The results of our study show that cortisol levels increase significantly as a consequence of system breakdown in a human-computer interaction task. In demonstrating this effect, our study has major implications for ICT research, development, management, and health policy. We confirm the value of a category of research heretofore largely neglected in ICT-related disciplines (particularly in business and information systems engineering, BISE, as well as information systems research, ISR), and argue that future research investigating human-machine interactions should consider the neurobiological perspective as a valuable complement to traditional concepts.

Keywords

Cortisol Hormone Hypothalamic-Pituitary-Adrenal (HPA) axis Neurobiology NeuroIS Stressor System breakdown Technostress 

Notes

Danksagung

Wir bedanken uns bei den Teilnehmern des Gmunden Retreat on NeuroIS 2011 (http://www.NeuroIS.org) für ihre nützlichen Kommentare zu einer früheren Version dieses Manuskripts. Darüber hinaus schätzen wir die Unterstützung durch das Auslandsbüro der Universität Linz, das eine Präsentation zum gegenständlichen Forschungsprojekt von René Riedl an der HEC Montréal gefördert hat. Weiter bedanken wir uns bei den wissenschaftlichen Mitarbeitern des Department of Information Technologies an der HEC Montréal, die Vorschläge unterbreitet haben, die zur Verbesserung des Artikels beigetragen haben. Schließlich wollen wir uns beim verantwortlichen Herausgeber, Armin Heinzl, sowie drei anonymen Gutachtern für ihre exzellenten Kommentare bedanken, die Möglichkeiten zur Verbesserung des Manuskripts aufgezeigt haben.

Literatur

  1. Ayyagari R, Grover V, Purvis R (2011) Technostress: technological antecedents and implications. MIS Quarterly 35(4):831–858 Google Scholar
  2. Becker BJ (1988) Synthesizing standardized mean-change measures. British Journal of Mathematical and Statistical Psychology 41(2):257–278 CrossRefGoogle Scholar
  3. Benbasat I, Dimoka A, Pavlou PA, Qiu L (2010) Incorporating social presence in the design of the anthropomorphic interface of recommendation agents: insights from an fMRI study. In: Proc 31st international conference on information systems, St. Louis, S 1–22 Google Scholar
  4. Boucsein W (2009) Forty years of research on system response times – what did we learn from it. In: Schlick CM (Hrsg) Methods and tools of industrial engineering and ergonomics. Springer, Berlin, S 575–593 CrossRefGoogle Scholar
  5. Brillhart PE (2004) Technostress in the workplace: managing stress in the electronic workplace. Journal of American Academy of Business 5(1):302–307 Google Scholar
  6. Brod C (1984) Technostress: The human cost of the computer revolution. Addison-Wesley, Reading Google Scholar
  7. Brynjolfsson E (1996) The contribution of information technology to consumer welfare. Information Systems Research 7(3):281–300 CrossRefGoogle Scholar
  8. Brynjolfsson E, Hitt LM (2000) Beyond computation: information technology, organizational transformation and business performance. Journal of Economic Perspectives 14(4):23–48 CrossRefGoogle Scholar
  9. Byrne EA, Parasuraman R (1996) Psychophysiology and adaptive automation. Biological Psychology 42(3):249–268 CrossRefGoogle Scholar
  10. Cohen S, Kamarck T, Mermelstein R (1983) A global measure of perceived stress. Journal of Health and Social Behavior 24(4):385–396 CrossRefGoogle Scholar
  11. Day A, Scott N, Kelloway EK (2010) Information and communication technology: implications for job stress and employee well-being. In: Perrewé P, Ganster D (Hrsg) Research in occupational stress and well being, Bd 8, S 317–350 Google Scholar
  12. De Kloet RE, Joels M, Holsboer F (2005) Stress and the brain: from adaptation to disease. Nature Reviews Neuroscience 6(6):463–475 CrossRefGoogle Scholar
  13. Desmond JE, Glover GH (2002) Estimating sample size in functional MRI (fMRI) neuroimaging studies: statistical power analyses. Journal of Neuroscience Methods 118(2):115–128 CrossRefGoogle Scholar
  14. Dickerson SS, Kemeny ME (2004) Acute stressors and cortisol responses: a theoretical integration and synthesis of laboratory research. Psychological Bulletin 130(3):355–391 CrossRefGoogle Scholar
  15. Dimoka A (2010) What does the brain tell us about trust and distrust? Evidence from a functional neuroimaging study. MIS Quarterly 34(2):373–396 Google Scholar
  16. Dimoka A, Banker RD, Benbasat I, Davis FD, Dennis AR, Gefen D, Gupta A, Ischebeck A, Kenning P, Müller-Putz G, Pavlou PA, Riedl R, vom Brocke J, Weber B (2012) On the use of neurophysiological tools in IS research: developing a research agenda for NeuroIS. MIS Quarterly, in press. http://www.misq.org/forthcoming/
  17. Dimoka A, Davis FD (2008) Where does TAM reside in the brain? The neural mechanisms underlying technology adoption. In: Proc 29th international conference on information systems, Paris, S 1–18 Google Scholar
  18. Foley P, Kirschbaum C (2010) Human hypothalamus-pituitary-adrenal axis responses to acute psychosocial stress in laboratory settings. Neuroscience and Biobehavioral Reviews 35(1):91–96 CrossRefGoogle Scholar
  19. Gao Y, Barreto A, Zhai J, Rishe N (2007) Digital filtering of pupil diameter variations for the detection of stress in computer users. In: Proc 11th world multi-conference on systemics, cybernetics and informatics, Orlando, S 30–35 Google Scholar
  20. Gartner Group (2008) Gartner says more than 1 billion PCs in use worldwide and headed to 2 billion units by 2014. http://www.gartner.com/it/page.jsp?id=703807. Abruf am 2011-04-21
  21. Hancock PA, Szalma JL (2008) Stress and neuroergonomics. In: Parasuraman R, Rizzo M (Hrsg) Neuroergonomics: the brain at work. Oxford University, New York, S 195–206 Google Scholar
  22. Het S, Ramlow G, Wolf OT (2005) A meta-analytic review of the effects of acute cortisol administration on human memory. Psychoneuroendocrinology 30(8):771–784 CrossRefGoogle Scholar
  23. Hudiburg RA (1989) Psychology of computer user: XVII. The computer technology hassles scale: revision, reliability, and some correlates. Psychological Reports 65(3):1387–1394 CrossRefGoogle Scholar
  24. Hudiburg RA (1995) Psychology of computer user: XXXIV. The computer technology hassles scale: subscales, norms, and reliability. Psychological Reports 77(3):779–782 CrossRefGoogle Scholar
  25. Hudiburg RA, Necessary JR (1996) Coping with computer-stress. Journal of Educational Computing Research 15(2):113–124 CrossRefGoogle Scholar
  26. Hung WH, Chang LM, Lin CH (2011) Managing the risk of overusing mobile phones in the working environment: a study of ubiquitous technostress. In: Proc 15th pacific Asia conference on information systems, Brisbane, S 1–12 Google Scholar
  27. Huston TL, Galletta DF, Huston JL (1993) The effects of computer monitoring on employee performance and stress: results of two experimental studies. In: Proc 26th annual Hawaii international conference on systems sciences, Maui, Hawaii, S 568–574 Google Scholar
  28. Internet World Stats (2010) Internet usage statistics: the Internet big picture. http://www.internetworldstats.com/stats.htm. Abruf am 2011-04-21
  29. Keeney RL (1999) The value of Internet commerce to the customer. Management Science 45(4):533–542 CrossRefGoogle Scholar
  30. Kolb B, Whishaw IQ (2009) Fundamentals of human neuropsychology, 6. Aufl. Worth, New York Google Scholar
  31. Korunka C, Huemer KH, Litschauer B, Karetta B, Kafka-Lützow A (1996) Working with new technologies: hormone excretion as an indicator for sustained arousal: a pilot study. Biological Psychology 42(3):439–452 CrossRefGoogle Scholar
  32. Lazarus RS (1993) From psychological stress to the emotions: a history of changing outlooks. Annual Review of Psychology 44(1):1–21 CrossRefGoogle Scholar
  33. Lazarus RS, Folkman S (1984) Stress, appraisal, and coping. Springer, New York Google Scholar
  34. Lieberman MD, Berkman ET, Wager TD (2009) Correlations in social neuroscience aren’t voodoo. Perspectives on Psychological Science 4(3):299–307 CrossRefGoogle Scholar
  35. Loos P, Riedl R, Müller-Putz GR, vom Brocke J, Davis FD, Banker RD, Léger PM (2010) NeuroIS: neuroscientific approaches in the investigation and development of information systems. Business & Information Systems Engineering 2(6):395–401 CrossRefGoogle Scholar
  36. McEwen BS (2006) Protective and damaging effects of stress mediators: central role of the brain. Dialogues in Clinical Neuroscience 8(4):367–381 Google Scholar
  37. Melamed S, Ugarten U, Shirom A, Kahana L, Lerman Y, Froom P (1999) Chronic burnout, somatic arousal and elevated salivary cortisol levels. Journal of Psychosomatic Research 46(6):591–598 CrossRefGoogle Scholar
  38. Nater UM, Okere U, Stallkamp R, Moor C, Ehlert U, Kliegel M (2006) Psychosocial stress enhances time-based prospective memory in healthy young men. Neurobiology of Learning and Memory 86(3):344–348 CrossRefGoogle Scholar
  39. Parasuraman R, Rizzo M (2008) Neuroergonomics: the brain at work. Oxford University, New York Google Scholar
  40. Picard RW (1997) Affective computing. MIT, Cambridge Google Scholar
  41. Picard RW (2003) Affective computing: challenges. International Journal of Human-Computer Studies 59(1–2):55–64 CrossRefGoogle Scholar
  42. Ragu-Nathan TS, Tarafdar M, Ragu-Nathan BS, Tu Q (2008) The consequences of technostress for end users in organizations: conceptual development and empirical validation. Information Systems Research 19(4):417–433 CrossRefGoogle Scholar
  43. Reuter M (2002) Impact of cortisol on emotions under stress and nonstress conditions: a pharmacopsychological approach. Neuropsychobiology 46(1):41–48 CrossRefGoogle Scholar
  44. Riedl R, Hubert M, Kenning P (2010a) Are there neural gender differences in online trust? An fMRI study on the perceived trustworthiness of eBay offers. MIS Quarterly 34(2):397–428 Google Scholar
  45. Riedl R, Banker RD, Benbasat I, Davis FD, Dennis AR, Dimoka A, Gefen D, Gupta A, Ischebeck A, Kenning P, Müller-Putz G, Pavlou PA, Straub DW, vom Brocke J, Weber B (2010b) On the foundations of NeuroIS: reflections on the Gmunden Retreat 2009. Communications of the AIS 27(1):243–264 Google Scholar
  46. Riedl R, Mohr P, Kenning P, Davis FD, Heekeren H (2011) Trusting humans and avatars: behavioral and neural evidence. In: Proc 32nd international conference on information systems, Shanghai, S 1–23 Google Scholar
  47. Schultheiss OC, Stanton SJ (2009) Assessment of salivary hormones. In: Harmon-Jones E, Beer JS (Hrsg) Methods in social neuroscience, Guilford, New York, S 17–44 Google Scholar
  48. Selye H (1946) The general adaptation syndrome and the diseases of adaptation. Journal of Clinical Endocrinology & Metabolism 6(2):117–230 CrossRefGoogle Scholar
  49. Society for Neuroscience (2008) Brain facts: a primer on the brain and nervous system. http://www.sfn.org/skins/main/pdf/brainfacts/2008/brain_facts.pdf. Abruf am 2011-02-21
  50. Takahashi T (2005) Social memory, social stress, and economic behaviors. Brain Research Bulletin 67(5):398–402 CrossRefGoogle Scholar
  51. Takahashi T, Ikeda K, Ishikawa M, Kitamura N, Tsukasaki T, Nakama D, Kameda T (2005) Anxiety, reactivity, and social stress-induced cortisol elevations in humans. Neuroendocrinology Letters 26(4):351–354 Google Scholar
  52. Tarafdar M, Tu Q, Ragu-Nathan BS, Ragu-Nathan TS (2007) The impact of technostress on role stress and productivity. Journal of Management Information Systems 24(1):301–328 CrossRefGoogle Scholar
  53. Tarafdar M, Tu Q, Ragu-Nathan TS (2010) Impact of technostress on end-user satisfaction and performance. Journal of Management Information Systems 27(3):303–334 CrossRefGoogle Scholar
  54. Tarafdar M, Pullins E, Ragu-Nathan TS (2011a) Examining impacts of technostress on the professional salesperson’s performance. In: Proc 17th Americas conference on information systems, Detroit, S 1–13 Google Scholar
  55. Tarafdar M, Tu Q, Ragu-Nathan TS, Ragu-Nathan BS (2011b) Crossing to the dark side: examining creators, outcomes, and inhibitors of technostress. Communications of the ACM 54(9):113–120 CrossRefGoogle Scholar
  56. Trimmel M, Meixner-Pendleton M, Haring S (2003) Stress response caused by system response time when searching for information on the Internet. Human Factors 45(4):615–621 CrossRefGoogle Scholar
  57. Tsigos C, Chrousos GP (2002) Hypothalamic-pituitary-adrenal axis, neuroendocrine factors and stress. Journal of Psychosomatic Research 53(4):865–871 CrossRefGoogle Scholar
  58. Tu Q, Wang K, Shu Q (2005) Computer-related technostress in China. Communications of the ACM 48(4):77–81 CrossRefGoogle Scholar
  59. Turner JA, Karasek RA (1984) Software ergonomics: effects of computer application design parameters on operator task performance and health. Ergonomics 27(6):663–690 CrossRefGoogle Scholar
  60. Van Eck M, Berkhof H, Nicolson N, Sulon J (1996) The effects of perceived stress, traits, mood states, and stressful daily events on salivary cortisol. Psychosomatic Medicine 58(5):447–458 Google Scholar
  61. Vedhara K, Hyde J, Gilchrist ID, Tytherleigh M, Plummer S (2000) Acute stress, memory, attention and cortisol. Psychoneuroendocrinology 25(6):535–549 CrossRefGoogle Scholar
  62. Vedhara K, Miles J, Bennett P, Plummer S, Tallon D, Brooks E, Gale L, Munnoch K, Schreiber-Kounine C, Fowler C, Lightman S, Sammon A, Rayter Z, Farndon J (2003) An investigation into the relationship between salivary cortisol, stress, anxiety and depression. Biological Psychology 62(2):89–96 CrossRefGoogle Scholar
  63. Walker BR (2007) Glucocorticoids and cardiovascular disease. European Journal of Endocrinology 157(5):545–559 CrossRefGoogle Scholar
  64. Wang K, Shu Q, Tu Q (2008) Technostress under different organizational environments: an empirical investigation. Computers in Human Behavior 24(6):3002–3013 CrossRefGoogle Scholar
  65. Wastell DG, Newman M (1996) Stress, control and computer system design: a psychophysiological field study. Behaviour & Information Technology 15(3):183–192 CrossRefGoogle Scholar
  66. Weil MM, Rosen LD (1997) Technostress: coping with technology @work @home @play. Wiley, New York Google Scholar
  67. Zhai J, Barreto A, Chin C, Li C (2005) User stress detection in human-computer interactions. Biomedical Sciences Instrumentation 41(2):277–286 Google Scholar

Copyright information

© Gabler Verlag 2012

Authors and Affiliations

  • René Riedl
    • 1
  • Harald Kindermann
    • 2
  • Andreas Auinger
    • 2
  • Andrija Javor
    • 3
  1. 1.Institut für Wirtschaftsinformatik – Information EngineeringJohannes Kepler Universität LinzLinzÖsterreich
  2. 2.Fakultät für ManagementFachhochschule OberösterreichSteyrÖsterreich
  3. 3.Abteilung für Neurologie und PsychiatrieAllgemeines Krankenhaus LinzLinzÖsterreich

Personalised recommendations