Journal of Business Economics

, Volume 88, Issue 5, pp 643–687 | Cite as

A systematic literature review of mining weak signals and trends for corporate foresight

  • Christian Mühlroth
  • Michael GrottkeEmail author
Original Paper


Due to the ever-growing amount of data, computer-aided methods and systems to detect weak signals and trends for corporate foresight are in increasing demand. To this day, many papers on this topic have been published. However, research so far has only dealt with specific aspects, but it has failed to provide a comprehensive overview of the research domain. In this paper, we conduct a systematic literature review to organize existing insights and knowledge. The 91 relevant papers, published between 1997 and 2017, are analyzed for their distribution over time and research outlets. Classifying them by their distinct properties, we study the data sources exploited and the data mining techniques applied. We also consider eight different purposes of analysis, namely weak signals and trends concerning political, economic, social and technological factors. The results of our systematic review show that the research domain has indeed been attracting growing attention over time. Furthermore, we observe a great variety of data mining and visualization techniques, and present insights on the efficacy and effectiveness of the data mining techniques applied. Our results reveal that a stronger emphasis on search strategies, data quality and automation is required to greatly reduce the human actor bias in the early stages of the corporate foresight process, thus supporting human experts more effectively in later stages such as strategic decision making and implementation. Moreover, systems for detecting weak signals and trends need to be able to learn and accumulate knowledge over time, attaining a holistic view on weak signals and trends, and incorporating multiple source types to provide a solid foundation for strategic decision making. The findings presented in this paper point to future research opportunities, and they can help practitioners decide which sources to exploit and which data mining techniques to apply when trying to detect weak signals and trends.


Machine learning Weak signal detection Emerging trend detection Corporate foresight Environmental scanning Strategic decision making Big data 

JEL Classification

C8 C88 E17 M1 M19 



This study was sponsored by the German Federal Ministry of Education and Research, grant number 02K16C191.


  1. Abbas A, Zhang L, Khan SU (2014) A literature review on the state-of-the-art in patent analysis. World Patent Inf 37:3–13. CrossRefGoogle Scholar
  2. Abe H, Tsumoto S (2010) Trend detection from large text data. In: IEEE international conference on systems man and cybernetics (SMC) pp 310–315.
  3. Adedoyin-Olowe M, Gaber MM, Stahl F (2013) Trcm: a methodology for temporal analysis of evolving concepts in twitter. In: International conference on artificial intelligence and soft computing, Springer, Berlin Heidelberg, pp 135–145.
  4. Aiello LM, Petkos G, Martin C, Corney D, Papadopoulos S, Skraba R, Goker A, Kompatsiaris I, Jaimes A (2013) Sensing trending topics in twitter. IEEE Trans Multimed 15(6):1268–1282. CrossRefGoogle Scholar
  5. Al-Azmi AAR (2013) Data, text and web mining for business intelligence: a survey. Int J Data Min Knowl Manag Process 3(2):1–21. CrossRefGoogle Scholar
  6. Ansoff HI (1975) Managing strategic surprise by response to weak signals. Calif Manag Rev 18(2):21–33CrossRefGoogle Scholar
  7. Bao BK, Xu C, Min W, Hossain MS (2015) Cross-platform emerging topic detection and elaboration from multimedia streams. ACM Trans Multimed Comput Commun Appl 11(4):1–21. CrossRefGoogle Scholar
  8. Barirani A, Agard B, Beaudry C (2013) Discovering and assessing fields of expertise in nanomedicine: a patent co-citation network perspective. Scientometrics 94(3):1111–1136. CrossRefGoogle Scholar
  9. Bello-Orgaz G, Menendez H, Okazaki S, Camacho D (2014) Combining social-based data mining techniques to extract collective trends from twitter. Malays J Comput Sci 27(2):95–111Google Scholar
  10. Bernard HR (2006) Social research methods: qualitative and quantitative approaches, reprinted edn. SAGE, Thousand Oaks, CalifGoogle Scholar
  11. Blomqvist E (2014) The use of semantic web technologies for decision support—a survey. Semant Web 5(3):177–201. Google Scholar
  12. Bolelli L, Ertekin Ş, Giles CL (2009) Topic and trend detection in text collections using latent Dirichlet allocation. In: Proceedings of the 31th European conference on IR research on advances in information retrieval (ECIR ’09).
  13. Bun KK, Ishizuka M (2006) Emerging topic tracking system in www. Knowl Based Syst 19(3):164–171. CrossRefGoogle Scholar
  14. Carr LP, Nanni AJ (2009) Delivering results: managing what matters. Springer, New YorkCrossRefGoogle Scholar
  15. Cataldi M, Di Caro L, Schifanella C (2013) Personalized emerging topic detection based on a term aging model. ACM Trans Intell Syst Technol (TIST) 5(1):1–27. CrossRefGoogle Scholar
  16. Caviggioli F (2016) Technology fusion: identification and analysis of the drivers of technology convergence using patent data. Technovation 55–56:22–32. CrossRefGoogle Scholar
  17. Chang PL, Wu CC, Leu HJ (2010) Using patent analyses to monitor the technological trends in an emerging field of technology: a case of carbon nanotube field emission display. Scientometrics 82(1):5–19. CrossRefGoogle Scholar
  18. Chen C (2006) Citespace II: detecting and visualizing emerging trends and transient patterns in scientific literature. J Am Soc Inform Sci Technol 57(3):359–377. CrossRefGoogle Scholar
  19. Chen H, Zhang G, Zhu D, Lu J (2015) A patent time series processing component for technology intelligence by trend identification functionality. Neural Comput Appl 26(2):345–353. CrossRefGoogle Scholar
  20. Cheng Q, Lu X, Liu Z, Huang J (2015) Mining research trends with anomaly detection models: the case of social computing research. Scientometrics 103(2):453–469. CrossRefGoogle Scholar
  21. Chi Y, Tseng BL, Tatemura J (2006) Eigen-trend: Trend analysis in the blogosphere based on singular value decompositions. In: Proceedings of the 15th ACM international conference on information and knowledge management, New York, pp 68–77Google Scholar
  22. Choi S, Yoon J, Kim K, Lee JY, Kim CH (2011) Sao network analysis of patents for technology trends identification: a case study of polymer electrolyte membrane technology in proton exchange membrane fuel cells. Scientometrics 88(3):863–883. CrossRefGoogle Scholar
  23. Curran CS, Leker J (2011) Patent indicators for monitoring convergence—examples from nff and ict. Technol Forecast Soc Change 78(2):256–273. CrossRefGoogle Scholar
  24. Dai XY, Chen QC, Wang XL, Xu J (2010) Online topic detection and tracking of financial news based on hierarchical clustering. In: 2010 International conference on machine learning and cybernetics (ICMLC), pp 3341–3346.
  25. Dueñas-Fernández R, Velásquez JD, L’Huillier G (2014) Detecting trends on the web: a multidisciplinary approach. Inf Fusion 20:129–135. CrossRefGoogle Scholar
  26. Eckhoff R, Markus M, Lassnig M, Schön S (2014) Detecting weak signals with technologies: overview of current technology-enhanced approaches for the detection of weak signals. Int J Trends Econ Manag Technol (IJTEMT) USA 5(5):1–7Google Scholar
  27. Ena O, Mikova N, Saritas O, Sokolova A (2016) A methodology for technology trend monitoring: the case of semantic technologies. Scientometrics 108(3):1013–1041. CrossRefGoogle Scholar
  28. Fan TK, Chang CH (2008) Exploring evolutionary technical trends from academic research papers. In: Kise K (ed) The eighth IAPR international workshop on document analysis systems, 2008, IEEE, Piscataway, NJ, pp 574–581.
  29. Fang Y, Zhang H, Ye Y, Li X (2014) Detecting hot topics from twitter: a multiview approach. J Inf Sci 40(5):578–593. CrossRefGoogle Scholar
  30. Fayyad U, Piatetsky-Shapiro G, Smyth P (1996) From data mining to knowledge discovery in databases. AI Mag 17(3):37–54Google Scholar
  31. Ferber R (2003) Information Retrieval: suchmodelle und data-mining-Verfahren für Textsammlungen und das Web, 1st edn. Dpunkt-Verl, HeidelbergGoogle Scholar
  32. Gaul W, Vincent D (2017) Evaluation of the evolution of relationships between topics over time. Adv Data Anal Classif 11(1):159–178. CrossRefGoogle Scholar
  33. Gayle HM, Blake BM (1980) Coal in West Virginia: geology and current mining trends. AAPG Bull 64(8):1287–1288Google Scholar
  34. Gerken JM, Moehrle MG (2012) A new instrument for technology monitoring: novelty in patents measured by semantic patent analysis. Scientometrics 91(3):645–670. CrossRefGoogle Scholar
  35. Geum Y, Jeon J, Seol H (2013) Identifying technological opportunities using the novelty detection technique: a case of laser technology in semiconductor manufacturing. Technol Anal Strat Manag 25(1):1–22. CrossRefGoogle Scholar
  36. Glänzel W, Thijs B (2012) Using ’core documents’ for detecting and labelling new emerging topics. Scientometrics 91(2):399–416. CrossRefGoogle Scholar
  37. González-Alcaide G, Llorente P, Ramos JM (2016) Bibliometric indicators to identify emerging research fields: publications on mass gatherings. Scientometrics 109(2):1283–1298. CrossRefGoogle Scholar
  38. Goorha S, Ungar L (2010) Discovery of significant emerging trends. In: Proceedings of the 16th ACM international conference on knowledge discovery and data mining, pp 57–64.
  39. Grandjean N, Charpiot B, Pena CA, Peitsch MC (2005) Competitive intelligence and patent analysis in drug discovery: mining the competitive knowledge bases and patents. Drug Discov Today Technol 2(3):211–215. CrossRefGoogle Scholar
  40. Guo H, Weingart S, Börner K (2011) Mixed-indicators model for identifying emerging research areas. Scientometrics 89(1):421–435. CrossRefGoogle Scholar
  41. Hennig P, Berger P, Meinel C (2013) Identify emergent trends based on the blogosphere. In: 2013 IEEE/WIC/ACM international joint conferences on web intelligence (WI) and intelligent agent technologies (IAT), p 3.
  42. Hiltunen E (2008) The future sign and its three dimensions. Futures 40(3):247–260. CrossRefGoogle Scholar
  43. Huang MH, Chang CP (2014) Detecting research fronts in oled field using bibliographic coupling with sliding window. Scientometrics 98(3):1721–1744. CrossRefGoogle Scholar
  44. Huang Y, Zhang Y, Ma J, Porter A, Wang X (2015) Tracing technology evolution pathways by combining tech mining and patent citation analysis. In: 2015 Portland international conference on management of engineering and technologyGoogle Scholar
  45. Huang J, Peng M, Wang H, Cao J, Gao W, Zhang X (2017) A probabilistic method for emerging topic tracking in microblog stream. World Wide Web 20(2):325–350. CrossRefGoogle Scholar
  46. Imran H, Sharan A (2010) A framework for automatic query expansion. In: International conference on web information systems and mining. Springer, Berlin Heidelberg, pp 386–393.
  47. Jeong Y, Yoon B (2015) Development of patent roadmap based on technology roadmap by analyzing patterns of patent development. Technovation 39–40:37–52. CrossRefGoogle Scholar
  48. Jun S, Park SS, Jang DS (2012a) Patent management for technology forecasting: a case study of the bio-industry. J Intell Prop Rights 17(6):539–546Google Scholar
  49. Jun S, Sung Park S, Sik Jang D (2012b) Technology forecasting using matrix map and patent clustering. Ind Manag Data Syst 112(5):786–807. CrossRefGoogle Scholar
  50. Kämpf M, Tessenow E, Kenett DY, Kantelhardt JW (2015) The detection of emerging trends using Wikipedia traffic data and context networks. PLOS One 10(12):e0141892. CrossRefGoogle Scholar
  51. Keller J, von der Gracht HA (2014) The influence of information and communication technology (ICT) on future foresight processes: results from a Delphi survey. Technol Forecast Soc Change 85(C):81–92. CrossRefGoogle Scholar
  52. Kim B, Gazzola G, Lee JM, Kim D, Kim K, Jeong MK (2014) Inter-cluster connectivity analysis for technology opportunity discovery. Scientometrics 98(3):1811–1825. CrossRefGoogle Scholar
  53. Kim D, Kim D, Hwang E, Rho S (2015a) TwitterTrends: a spatio-temporal trend detection and related keywords recommendation scheme. Multimed Syst 21(1):73–86. CrossRefGoogle Scholar
  54. Kim J, Hwang M, Jeong DH, Jung H (2012) Technology trends analysis and forecasting application based on decision tree and statistical feature analysis. Expert Syst Appl 39(16):12618–12625. CrossRefGoogle Scholar
  55. Kim N, Lee H, Kim W, Lee H, Suh JH (2015b) Dynamic patterns of industry convergence: evidence from a large amount of unstructured data. Res Policy 44(9):1734–1748. CrossRefGoogle Scholar
  56. Kim S, Kim YE, Bae KJ, Choi SB, Park JK, Koo YD, Park YW, Choi HK, Kang HM, Hong SW (2013) Nest: a quantitative model for detecting emerging trends using a global monitoring expert network and Bayesian network. Futures 52:59–73. CrossRefGoogle Scholar
  57. Kitchenham B, Charters S (2007) Guidelines for performing systematic literature reviews in software engineering: Technical report ebse 2007-001. Keele university and Durham University joint reportGoogle Scholar
  58. Kontostathis A, Galitsky LM, Pottenger WM, Roy S, Phelps DJ (2004) A survey of emerging trend detection in textual data mining.
  59. Kuosa T (2010) Futures signals sense-making framework (fssf): a start-up tool to analyse and categorise weak signals, wild cards, drivers, trends and other types of information. Futures 42(1):42–48. CrossRefGoogle Scholar
  60. Lau JY (2012) On-line trend analysis with topic models. In: Proceedings of the 24th international conference on computational linguistics (24)Google Scholar
  61. Lee C, Jeon J, Park Y (2011) Monitoring trends of technological changes based on the dynamic patent lattice: a modified formal concept analysis approach. Technol Forecast Soc Change 78(4):690–702. CrossRefGoogle Scholar
  62. Lee JY, Kim H, Kim PJ (2010) Domain analysis with text mining: analysis of digital library research trends using profiling methods. J Inf Sci 36(2):144–161. CrossRefGoogle Scholar
  63. Lee S, Yoon B, Park Y (2009) An approach to discovering new technology opportunities: keyword-based patent map approach. Technovation 29(6–7):481–497. CrossRefGoogle Scholar
  64. Lee WH (2008) How to identify emerging research fields using scientometrics: an example in the field of information security. Scientometrics 76(3):503–525. CrossRefGoogle Scholar
  65. Lee Y, Kim SY, Song I, Park Y, Shin J (2014) Technology opportunity identification customized to the technological capability of smes through two-stage patent analysis. Scientometrics 100(1):227–244. CrossRefGoogle Scholar
  66. Lent B, Agrawal R, Srikant R (1997) Discovering trends in text databases. In: Proceedings of the third international conference on knowledge discovery and data mining, pp 227–230Google Scholar
  67. Liu DR, Shih MJ, Liau CJ, Lai CH (2009) Mining the change of event trends for decision support in environmental scanning. Expert Syst Appl 36(2):972–984. CrossRefGoogle Scholar
  68. Lu Y, Zhang P, Liu J, Li J, Deng S (2013) Health-related hot topic detection in online communities using text clustering. Plos One 8(2):56221. CrossRefGoogle Scholar
  69. Luo J, Pan X, Zhu X (2015) Identifying digital traces for business marketing through topic probabilistic model. Technol Anal Strat Manag 27(10):1176–1192. CrossRefGoogle Scholar
  70. Ma J, Porter AL (2015) Analyzing patent topical information to identify technology pathways and potential opportunities. Scientometrics 102(1):811–827. CrossRefGoogle Scholar
  71. Madani F (2015) ’technology mining’ bibliometrics analysis: applying network analysis and cluster analysis. Scientometrics 105(1):323–335. CrossRefGoogle Scholar
  72. Mayer JH, Steinecke N, Quick R (2011) Improving the applicability of environmental scanning systems: state of the art and future research. In: Nüttgens M (ed) IFIP Advances in information and communication technology governance and sustainability in information systems, vol 366. Springer, Berlin, pp 207–223. Google Scholar
  73. Mei Q, Zhai C (2005) Discovering evolutionary theme patterns from text: an exploration of temporal text mining. In: Grossman R, Bayardo R, Bennett K (eds) Proceeding of the eleventh ACM SIGKDD international conference, pp 198–207.
  74. Milanez DH, De Faria LIL, Do Amaral RM, Leiva DR, Gregolin JAR (2014) Patents in nanotechnology: an analysis using macro-indicators and forecasting curves. Scientometrics 101(2):1097–1112. CrossRefGoogle Scholar
  75. Moreira ALM, Hayashi TWN, Coelho GP, da Silva Ana, Antunes Estela (2015) A clustering method for weak signals to support anticipative intelligence. Int J Artif Intell Expert Syst(IJAE) 6(1):Google Scholar
  76. Mryglod O, Holovatch Y, Kenna R, Berche B (2016) Quantifying the evolution of a scientific topic: reaction of the academic community to the chornobyl disaster. Scientometrics 106(3):1151–1166. CrossRefGoogle Scholar
  77. Murtaza SS, Khreich W, Hamou-Lhadj A, Bener AB (2016) Mining trends and patterns of software vulnerabilities. J Syst Softw 117:218–228. CrossRefGoogle Scholar
  78. Nasraoui O, Rojas C, Cardona C (2006) A framework for mining evolving trends in web data streams using dynamic learning and retrospective validation. Comput Netw 50(10):1488–1512. CrossRefGoogle Scholar
  79. Nguyen KL, Byung-Joo Shin, Seong Joon Yoo (2016) Hot topic detection and technology trend tracking for patents utilizing term frequency and proportional document frequency and semantic information. In: 2016 international conference on big data and smart computing (BigComp), pp 223–230.
  80. Noh H, Song YK, Lee S (2016) Identifying emerging core technologies for the future: case study of patents published by leading telecommunication organizations. Telecommun Policy 40(10–11):956–970. CrossRefGoogle Scholar
  81. Nohuddin PNE, Sunayama W, Christley R, Coenen F, Setzkorn C (2014) Trend mining in social networks: from trend identification to visualization. Expert Syst 31(5):457–468. CrossRefGoogle Scholar
  82. Palomino MA, Vincenti A, Owen R (2013) Optimising web-based information retrieval methods for horizon scanning. Foresight 15(3):159–176. CrossRefGoogle Scholar
  83. Park H, Kim E, Bae KJ, Hahn H, Sung TE, Kwon HC (2011) Detection and analysis of trend topics for global scientific literature using feature selection based on gini-index. 2011 IEEE international conference on tools with artificial intelligence. pp 965–969.
  84. Park S, Kim J, Lee H, Jang D, Jun S (2016) Methodology of technological evolution for three-dimensional printing. Ind Manag Data Syst 116(1):122–146. CrossRefGoogle Scholar
  85. Parker J, Wei Y, Yates A, Frieder O, Goharian N (2013) A framework for detecting public health trends with twitter. In: Rokne J, Faloutsos C (eds) Proceedings of the 2013 IEEE/ACM international conference on advances in social networks analysis and mining (ASONAM 2013), pp 556–563.
  86. Pinto JCL, Chahed T, Altman E (2015) Trend detection in social networks using Hawkes processes. In: Pei J, Silvestri F, Tang J (eds) The 2015 IEEE/ACM international conference, pp 1441–1448.
  87. Porter AL, Youtie J, Shapira P, Schoeneck DJ (2008) Refining search terms for nanotechnology. J Nanopart Res 10(5):715–728. CrossRefGoogle Scholar
  88. Preschitschek N, Niemann H, Lenker J, Moehrle MG (2013) Anticipating industry convergence: semantic analyses vs ipc co-classification analyses of patents. Foresight 15(6):446–464. CrossRefGoogle Scholar
  89. Rill S, Reinel D, Scheidt J, Zicari RV (2014) Politwi: early detection of emerging political topics on twitter and the impact on concept-level sentiment analysis. Knowl Based Syst 69:24–33. CrossRefGoogle Scholar
  90. Robertson S (2004) Understanding inverse document frequency: on theoretical arguments for IDF. J Doc 60(5):503–520. CrossRefGoogle Scholar
  91. Rodriguez A, Tosyali A, Kim B, Choi J, Lee JM, Coh BY, Jeong MK (2016) Patent clustering and outlier ranking methodologies for attributed patent citation networks for technology opportunity discovery. IEEE Trans Eng Manage 63(4):426–437. CrossRefGoogle Scholar
  92. Rohrbeck R, Bade M (2012) Environmental scanning, futures research, strategic foresight and organizational future orientation: a review, integration, and future research directions: Ispim annual conference, Barcelona, spainGoogle Scholar
  93. Rohrbeck R, Thom N, Arnold HM (2015) It tools for foresight: the integrated insight and response system of Deutsche telekom innovation laboratories. Technol Forecast Soc Chang 97(8):115–126CrossRefGoogle Scholar
  94. Santo Md, Coelho GM, dos Santos DM, Filho LF (2006) Text mining as a valuable tool in foresight exercises: a study on nanotechnology. Technol Forecast Soc Change 73(8):1013–1027. CrossRefGoogle Scholar
  95. Saritas O, Smith JE (2011) The big picture—trends, drivers, wild cards, discontinuities and weak signals. Futures 43(3):292–312. CrossRefGoogle Scholar
  96. Schult R, Spiliopoulou M (2006) Discovering emerging topics in unlabelled text collections. In: Manolopoulos Y (ed) Advances in databases and information systems, Lecture Notes in Computer Science, vol 4152, Springer, Berlin [u.a.], pp 353–366.
  97. Schwarz JO (2005) Pitfalls in implementing a strategic early warning system. Foresight 7(4):22–30. CrossRefGoogle Scholar
  98. Shibata N, Kajikawa Y, Takeda Y, Sakata I, Matsushima K (2011) Detecting emerging research fronts in regenerative medicine by the citation network analysis of scientific publications. Technol Forecast Soc Change 78(2):274–282. CrossRefGoogle Scholar
  99. Shih MJ, Liu DR, Hsu ML (2010) Discovering competitive intelligence by mining changes in patent trends. Expert Syst Appl 37(4):2882–2890. CrossRefGoogle Scholar
  100. Song M, Kim MC, Jeong YK (2014) Analyzing the political landscape of 2012 Korean presidential election in twitter. IEEE Intell Syst 29(2):18–26. CrossRefGoogle Scholar
  101. Steinecke NC, Quick R, Mohr T (2011) Environmental scanning systems: state of the art and first instantiation. PACIS 2011 ProceedingsGoogle Scholar
  102. Takahashi T, Tomioka R, Yamanishi K (2014) Discovering emerging topics in social streams via link-anomaly detection. IEEE Trans Knowl Data Eng 26(1):120–130. CrossRefGoogle Scholar
  103. Tho QT, Hui SC, Fong A (2003) Web mining for identifying research trends. In: International conference on Asian digital libraries, pp 290–301.
  104. Thorleuchter D, van den Poel D (2013) Weak signal identification with semantic web mining. Expert Syst Appl 40(12):4978–4985. CrossRefGoogle Scholar
  105. Thorleuchter D, Scheja T, van den Poel D (2014) Semantic weak signal tracing. Expert Syst Appl 41(11):5009–5016. CrossRefGoogle Scholar
  106. Trappey CV, Wu HY, Taghaboni-Dutta F, Trappey AJ (2011) Using patent data for technology forecasting: China rfid patent analysis. Adv Eng Inform 25(1):53–64. CrossRefGoogle Scholar
  107. Tu YN, Hsu SL (2016) Constructing conceptual trajectory maps to trace the development of research fields. J Assoc Inf Sci Technol 67(8):2016–2031. CrossRefGoogle Scholar
  108. Tu YN, Seng JL (2012) Indices of novelty for emerging topic detection. Inf Process Manag 48(2):303–325. CrossRefGoogle Scholar
  109. Veugelers M, Bury J, Viaene S (2010) Linking technology intelligence to open innovation. Technol Forecast Soc Change 77(2):335–343. CrossRefGoogle Scholar
  110. Vidhya KA, Aghila G (2010) Text mining process, techniques and tools: an overview. Int J Inf Technol Knowl Manag 2:613–622Google Scholar
  111. vom Brocke J, Simons A, Riemer K, Niehaves B, Plattfaut R, Cleven A (2015) Standing on the shoulders of giants: challenges and recommendations of literature search in information systems research. Commun Assoc Inf Syst 37(1):9Google Scholar
  112. von der Gracht HA, Vennemann CR, Darkow IL (2010) Corporate foresight and innovation management: a portfolio-approach in evaluating organizational development. Learn Future Faster 42(4):380–393. Google Scholar
  113. Wang J, Li L, Tan F, Zhu Y, Feng W (2015a) Detecting hotspot information using multi-attribute based topic model. PLOS ONE 10(10):e0140539. CrossRefGoogle Scholar
  114. Wang MY, Chang DS, Kao CH (2010) Identifying technology trends for R&D planning using triz and text mining. R&D Manag 40(5):491–509. CrossRefGoogle Scholar
  115. Wang X, McCallum A (2006) Topics over time: a non-markov continuous-time model of topical trends. In: 2006 Proceedings of the ACM SIGKDD international conference on knowledge discovery and data mining.
  116. Wang X, Cheng Q, Lu W (2014) Analyzing evolution of research topics with neviewer: a new method based on dynamic co-word networks. Scientometrics 101(2):1253–1271. CrossRefGoogle Scholar
  117. Wang X, Qiu P, Zhu D, Mitkova L, Lei M, Porter AL (2015b) Identification of technology development trends based on subject-action-object analysis: the case of dye-sensitized solar cells. Technol Forecast Soc Change 98:24–46. CrossRefGoogle Scholar
  118. Wanner F, Stoffel A, Jäckle D, Kwon BC, Weiler A, Keim DA (2014) State-of-the-art report of visual analysis for event detection in text data streams. The Eurographics AssociationGoogle Scholar
  119. Weenen TC, Ramezanpour B, Pronker ES, Commandeur H, Claassen E (2013) Food-pharma convergence in medical nutrition—best of both worlds? PLOS ONE 8(12):e82609. CrossRefGoogle Scholar
  120. Wetzker R, Zimmermann C, Bauckhage C (2010) Detecting trends in social bookmarking systems. Int J Data Warehouse Min 6(1):38–57. CrossRefGoogle Scholar
  121. Woon WL, Madnick S (2012) Semantic distances for technology landscape visualization. J Intell Inf Syst 39(1):29–58. CrossRefGoogle Scholar
  122. Woon WL, Henschel A, Madnick S (2009) A framework for technology forecasting and visualization. In: International conference on innovations in information technology (IIT), pp 115–159.
  123. Wu FS, Shiu CC, Lee PC, Su HN (2010) Integrated methodologies for mapping and forecasting science and technology trends: a case of etching technology. 2010 Technology Management for Global Economic Growth (PICMET) pp 1–23Google Scholar
  124. Xie W, Zhu F, Jiang J, Lim EP, Wang K (2016) Topicsketch: real-time bursty topic detection from twitter. IEEE Trans Knowl Data Eng 28(8):2216–2229. CrossRefGoogle Scholar
  125. Yang L, Lin H, Lin Y, Liu S (2016) Detection and extraction of hot topics on chinese microblogs. Cognit Comput 8(4):577–586. CrossRefGoogle Scholar
  126. Yoon B, Park Y (2007) Development of new technology forecasting algorithm: hybrid approach for morphology analysis and conjoint analysis of patent information. IEEE Trans Eng Manag 54(3):588–599. CrossRefGoogle Scholar
  127. Yoon J, Kim K (2012) Detecting signals of new technological opportunities using semantic patent analysis and outlier detection. Scientometrics 90(2):445–461. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Chair of Statistics and Econometrics, Friedrich-Alexander-Universität Erlangen-NürnbergNurembergGermany

Personalised recommendations