Journal of Business Economics

, Volume 86, Issue 5, pp 537–573 | Cite as

A GRASP heuristic for the hot strip mill scheduling problem under consideration of energy consumption

  • Karen PuttkammerEmail author
  • Matthias G. Wichmann
  • Thomas S. Spengler
Original Paper


Hot strip mill rolling is an energy intensive production process in the steel industry. It converts steel slabs at high temperatures into steel strips. In this paper we address the related planning problem, i.e. the hot strip mill scheduling problem. The task is to determine the production sequence of production orders within a schedule. The involved energy consumption for heating individual slabs is explicitly considered in a new mixed integer problem formulation. The model is solved using a greedy randomized adaptive search procedure. In a numerical case study based on real world data the applicability and performance of the proposed heuristic is analyzed. The solution approach is able to find optimal solutions for small problem instances. Moreover, it solves industry size problem instances within reasonable time and outperforms the rule based planning approach prevalent in praxis.


Hot strip mill scheduling Energy-oriented scheduling Steel production GRASP heuristic 

JEL Classification



  1. Birat J, Lorrain J, de Lassat Y (2009) The “CO2 Tool”: CO2 emissions & energy consumption of existing & breakthrough steelmaking routes. Rev Met Paris 106(9):325–336. doi: 10.1051/metal/2009060 CrossRefGoogle Scholar
  2. Chen X, Wan W, Xu X (1998) Modeling rolling batch planning as vehicle routing problem with time windows. Comput Oper Res 25(12):1127–1136CrossRefGoogle Scholar
  3. Chen WH, Chung YC, Liu JL (2005) Analysis on energy consumption and performance of reheating furnaces in a hot strip mill. Int Commun Heat Mass Transfer 32(5):695–706. doi: 10.1016/j.icheatmasstransfer.2004.10.019 CrossRefGoogle Scholar
  4. Chen Y, Lu Y, Ge M, Yang G, Pan C (2012) Development of hybrid evolutionary algorithms for production scheduling of hot strip mill. Comput Oper Res 39(2):339–349CrossRefGoogle Scholar
  5. Feo TA, Sarathy K, McGahan J (1996) A grasp for single machine scheduling with sequence dependent setup costs and linear delay penalties. Comput Oper Res 23(9):881–895. doi: 10.1016/0305-0548(95)00084-4 CrossRefGoogle Scholar
  6. Gupta SR, Smith JS (2006) Algorithms for single machine total tardiness scheduling with sequence dependent setups. Eur J Oper Res 175(2):722–739. doi: 10.1016/j.ejor.2005.05.018 CrossRefGoogle Scholar
  7. Jia S, Zhu J, Yang G, Yi J, Du B (2012) A decomposition-based hierarchical optimization algorithm for hot rolling batch scheduling problem. Int J Adv Manuf Tech 61(5):487–501. doi: 10.1007/s00170-011-3749-9 CrossRefGoogle Scholar
  8. Kosiba ED, Wright JR, Cobbs AE (1992) Discrete event sequencing as a traveling salesman problem. Comput Ind 19(3):317–327CrossRefGoogle Scholar
  9. Liu S (2010) Model and algorithm for hot rolling batch planning in steel plants. Int J Inf Manag Sci 21:247–263Google Scholar
  10. Lopez L, Carter MW, Gendreau M (1998) The hot strip mill production scheduling problem: a tabu search approach. Eur J Oper Res 106:317–335CrossRefGoogle Scholar
  11. Neumann K, Morlock M (2002) Operations-Research, 2nd edn. Hanser, München, WienGoogle Scholar
  12. Ning S, Wang W (2006) Multi-objective Optimization Model and Algorithm for Hot Rolling Lot Planning. In: Institute of Electrical and Electronics Engineers (ed) 6th world congress on intelligent control and automation, vol 2. Curran Associates Inc, Dalian, pp 7390–7394Google Scholar
  13. Resende MG, Ribeiro CC (2003) Greedy randomized adaptive search procedures. In: Glover F, Kochenberger G (eds) Handbook of metaheuristics. Kluwer Academic Publishers, Norwell, pp 219–249Google Scholar
  14. Tang L, Liu J, Rong A, Yang Z (2000) A multiple traveling salesman problem model for hot rolling scheduling in Shanghai Baoshan Iron & Steel Complex. Eur J Oper Res 124(2):267–282CrossRefGoogle Scholar
  15. Tang L, Liu J, Rong A, Yang Z (2001) A review of planning and scheduling systems and methods for integrated steel production. Eur J Oper Res 133(1):1–20CrossRefGoogle Scholar
  16. Tu N, Luo X, Chai T (2011) Two-stage method for solving large-scale hot rolling planning problem in steel production. In: International Federation of Automatic Control (ed) Preprints of the 18th IFAC world congress, vol 18, pp 12120–12125Google Scholar
  17. Wang X, Tang L (2008) Integration of batching and scheduling for hot rolling production in the steel industry. Int J Adv Manuf Tech 36(5):431–441CrossRefGoogle Scholar
  18. Wichmann MG, Volling T, Spengler TS (2014) A GRASP heuristic for slab scheduling at continuous casters. OR Spectrum 36(3):693–722. doi: 10.1007/s00291-013-0330-y CrossRefGoogle Scholar
  19. Xiong C, Qidi W (2002) Formulating the steel scheduling problem as a TSPTW. In: East China University of Science and Technology (ed) Proceedings of the 4th world congress on intelligent control and automation, vol 3. East China University of Science and Technology, Shanghai, pp 1744–1748Google Scholar
  20. Yadollahpour M, Bijari M, Kavosh S, Mahnam M (2009) Guided local search algorithm for hot strip mill scheduling problem with considering hot charge rolling. Int J Adv Manuf Tech 45(11):1215–1231CrossRefGoogle Scholar
  21. Zhao J, Wang W, Liu Q, Wang Z, Shi P (2009) A two-stage scheduling method for hot rolling and its application. Control Eng Pract 17(6):629–641CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Karen Puttkammer
    • 1
    Email author
  • Matthias G. Wichmann
    • 1
  • Thomas S. Spengler
    • 1
  1. 1.Institute of Automotive Management and Industrial ProductionTechnische Universität BraunschweigBrunswickGermany

Personalised recommendations