Skip to main content

Technology and capacity planning for the recycling of lithium-ion electric vehicle batteries in Germany


Currently, the German government strives for establishing Germany as a lead market for electric mobility. A successful growth of the electric vehicle market would be followed by a corresponding volume of spent lithium-ion batteries containing valuable and scarce metals. With their recycling, the high environmental load and energy use of primary production could be reduced, import dependencies could be diminished, and economic value could be created. Pioneering the mandatory deployment of an appropriate recycling network in Germany, the aim of this paper is to determine investment plans for the installation of recycling plants of different technologies and capacities and to derive recommendations for potential investors. For this purpose, a mathematical optimisation model is developed, allowing the economic selection of recycling technologies and capacities to be deployed in the network over time. In a comprehensive study, the impact of uncertain developments and mandatory minimum recycling rates on the timing of plant installations, on technology and capacity selection, on material flows, and on the profitability of recycling are analysed. The main finding is that despite the prevailing uncertainties a robust plan exists at least for initial decisions. It is shown that the recycling network can be operated highly economically in four out of five scenarios while meeting mandatory minimum recycling rates easily. By contrast, achieving both profitability and the minimum recycling rates will be a challenge if less valuable metals are used in the production of batteries, requiring the development of additional recycling steps to both reduce waste and increase profitability.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11


  1. Achillas C, Vlachokostas C, Aidonis D, Moussiopoulos Ν, Iakovou E, Banias G (2010) Optimising reverse logistics network to support policy-making in the case of electrical and electronic equipment. Waste Manag 30(12):2592–2600

    Article  Google Scholar 

  2. Barros AI, Dekker R, Scholten V (1998) A two-level network for recycling sand: a case study. Eur J Oper Res 110(2):199–214

    Article  Google Scholar 

  3. Dat LQ, Truc Linh DT, Chou S, Yu VF (2012) Optimizing reverse logistic costs for recycling end-of-life electrical and electronic products. Expert Syst Appl 39(7):6380–6387.

    Article  Google Scholar 

  4. de Brito MP, Dekker R (2004) A framework for reverse logistics. In: Dekker R, Fleischmann M, Inderfurth K, Van Wassenhove LN (eds) Reverse logistics. Quantitative models for closed-loop supply chains. Springer, Berlin

    Google Scholar 

  5. Debreu G (1959) Theory of value. An axiomatic analysis of economic equilibrium. Yale University Press; Wiley, New Haven, London

    Google Scholar 

  6. Dobos I, Gobsch B, Pakhomova N, Pishchulov G, Richter K (2013) Design of contract parameters in a closed-loop supply chain. Cent Eur J Oper Res 21(4):713–727

    Article  Google Scholar 

  7. European Commission (2012) Commission regulation (EU) No 493/2012 of 11 June 2012. Off J Eur Union 55(L 151):9–21

  8. Fleischmann M, Bloemhof-Ruwaard J, Dekker R, Ed Laan, Nunen J, Wassenhove L (1997) Quantitative models for reverse logistics a review. Eur J Oper Res 103(1):1–17

    Article  Google Scholar 

  9. Fleischmann M, Krikke H, Dekker R, Flapper S (2000) A characterisation of logistics networks for product recovery. Omega 28(6):653–666

    Article  Google Scholar 

  10. Fleischmann B, Ferber S, Henrich P (2006) Strategic planning of BMW’s global production network. Interfaces 36(3):194–208

    Article  Google Scholar 

  11. Gaines L, Cuenca R. (2000) Costs of lithium–ion batteries for vehicles. Accessed 01 Aug 2014

  12. German Federal Government (2009) National electromobility development plan. Accessed 21 May 2013

  13. Hoyer C, Kieckhäfer K, Spengler TS (2011a) A strategic framework for the design of recycling networks for lithium–ion batteries from electric vehicles. In: Hesselbach J, Herrmann C (eds) Glocalized solutions for sustainability in manufacturing. Springer, Heidelberg, pp 79–84

    Chapter  Google Scholar 

  14. Hoyer C, Kieckhäfer K, Spengler TS (2011b) Strategische Planung des Recyclings von Lithium-Ionen-Traktionsbatterien. In: Sucky E, Asdecker B, Dobhan A, Haas S, Wiese J (eds) Logistikmanagement. Herausforderungen, Chancen und Lösungen, vol 2. University of Bamberg Press, Bamberg:399–419

  15. Hoyer C, Kieckhäfer K, Spengler TS (2013) Impact of mandatory rates on the recycling of lithium–ion batteries from electric vehicles in Germany. In: Nee AYC, Song B, Ong S (eds) Re-engineering manufacturing for sustainability. Springer, Singapore, New York, pp 543–548

    Chapter  Google Scholar 

  16. Hübner R (2007) Strategic supply chain management in process industries. An application to specialty chemicals production network design. Lecture notes in economics and mathematical systems, vol 594. Springer, Berlin

    Google Scholar 

  17. Kelly DL, Marucheck AS (1984) Planning horizon results for the dynamic warehouse location problem. J Oper Manag 4(3):279–294

    Article  Google Scholar 

  18. Klibi W, Martel A, Guitouni A (2010) The design of robust value-creating supply chain networks: a critical review. Eur J Oper Res 203(2):283–293

    Article  Google Scholar 

  19. Koopmanns TC (1951) Analysis of production as an efficient combination of activities. In: Koopmanns TC (ed) Activity analysis of production and allocation. Proceedings of a conference. John Wiley & Sons, New York, pp 33–97

    Google Scholar 

  20. Kwade A, Bärwaldt G (2012) LithoRec. Recycling von Lithium-Ionen-Batterien. Abschlussbericht des Verbundprojektes. Cuvillier, Göttingen

  21. Mafakheri F, Nasiri F (2013) Revenue sharing coordination in reverse logistics. J Clean Prod 59:185–196

    Article  Google Scholar 

  22. Melo M, Nickel S, Saldanha-da-Gama F (2009) Facility location and supply chain management—a review. Eur J Oper Res 196(2):401–412

    Article  Google Scholar 

  23. Paquet M, Martel A, Desaulniers G (2004) Including technology selection decisions in manufacturing network design models. Int J Comp Integ M 17(2):117–125

    Article  Google Scholar 

  24. Peters MS, Timmerhaus KD, West RE (2004) Plant design and economics for chemical engineers, 5th edn., McGraw-Hill chemical engineering seriesMcGraw-Hill, Boston

    Google Scholar 

  25. Pokharel S, Mutha A (2009) Perspectives in reverse logistics: a review. Resour Conserv Recycl 53(4):175–182

    Article  Google Scholar 

  26. Rubio S, Chamorro A, Miranda FJ (2008) Characteristics of the research on reverse logistics (1995–2005). Int J Prod Res 46(4):1099–1120

    Article  Google Scholar 

  27. Sasikumar P, Kannan G (2009) Issues in reverse supply chain, part III: classification and simple analysis. Int J Sustain Eng 2(1):2–27

    Article  Google Scholar 

  28. Schultmann F, Engels B, Rentz O (2003) Closed-loop supply chains for spent batteries. Interfaces 33(6):57–71

    Article  Google Scholar 

  29. Shih L (2001) Reverse logistics system planning for recycling electrical appliances and computers in Taiwan. Resour Conserv Recycl 32(1):55–72

    Article  Google Scholar 

  30. Spengler TS, Rentz O (1996) Betriebswirtschaftliche Planungsmodelle zur Demontage und zum Recycling komplexer zusammengesetzter Produkte. Z Betriebswirtschaft(2):79–96

  31. Spengler TS, Püchert H, Penkuhn T, Rentz O (1997) Environmental integrated production and recycling management. Eur J Oper Res 97(2):308–326

    Article  Google Scholar 

  32. Statistisches Bundesamt (2013) Güterbeförderung im Straßenverkehr. Einschl. Güterbeförderung im Straßenverkehr durch Speditionen (WZ 63.40.1). Accessed 12 Aug 2013

  33. Thierry M, Salomon M, van Nunen J, Van Wassenhove L (1995) Strategic issues in product recovery management. Calif Manag Rev 37(2):114–135

    Article  Google Scholar 

  34. Verband der Chemischen Industrie e.V. (2012) Chemiewirtschaft in Zahlen 2012. Accessed 12 Aug 2013

  35. Walther G, Spengler TS (2005) Impact of WEEE-directive on reverse logistics in Germany. Int J Phys Distrib Logist Manag 35(5):337–361

    Article  Google Scholar 

  36. Walther G, Schmid E, Spengler TS (2008) Negotiation-based coordination in product recovery networks. Int J Prod Econ 111(2):334–350

    Article  Google Scholar 

  37. Walther G, Schatka A, Spengler TS (2012) Design of regional production networks for second generation synthetic bio-fuel—a case study in Northern Germany. Eur J Oper Res 218(1):280–292

    Article  Google Scholar 

Download references


We would like to acknowledge the support of the German Federal Ministry for the Environment, Nature Conservation and Nuclear Safety, funding the research projects LithoRec (16EM0023) and LithoRec II (16EM1024). We further greatly appreciate our industrial and scientific project partners for their valuable co-operation and assistance.

Author information



Corresponding author

Correspondence to Claas Hoyer.

Appendix: Mathematical formulation of the optimisation model for technology and capacity planning

Appendix: Mathematical formulation of the optimisation model for technology and capacity planning

The model will be explained in two steps: Firstly, all symbols used are defined in Tables 9, 10 and 11. Decision variables are emphasised for convenience. Secondly, the objective function and the constraints of the model are formulated and explained.

Table 9 Sets and indices of the model
Table 10 Decision variables of the model
Table 11 Parameters of the model

The objective is to maximise the net present value of the cash flows in the planning horizon. For reasons of clarity and comprehensibility, the objective function (2) is split: The first summand of the objective function \(DCF_{m}^{Invest}\) (3) represents the aggregate discounted cash flows related directly to the installation and operation of all units of modules of type \(m\). For that, the corresponding decision variables \(\varvec{x}_{{\varvec{m},\varvec{t}_{\varvec{B}} ,\varvec{t}_{\varvec{E}} }}\) are multiplied with module-specific discounted cash flows, which include initial expenses for installation and start-up, potential renewal expenses, fixed expenses for operation, and liquidation revenues. The latter factor is expressed by the net present values \(p_{{m,t_{B} ,t_{E} }}^{inv}\) for all modules and all possible intervals of operation in the planning horizon, which have to be calculated by means of a predefined logic. While reducing the complexity of the model, this approach enables high flexibility such as pre-setting multi-periodic investment profiles, excluding certain combinations by using prohibitively high (negative) values, or permitting renewal investments to operate modules longer than their (initial) physical life.

The second summand of the objective function consists of three cash-flow terms, each being related to a specific period and discounted by multiplication with the discount rate \(d_{t}\). The three terms depict cash flows caused by tactical decisions with regard to the recycling programme. The first one, \(CF_{t}^{Operating}\) (4), is the aggregate sum of variable operation expenses over all activities executed in all modules. The second one, \(CF_{t}^{Transport}\) (5), is the aggregate expense for the collection of products from the sinks and for the delivery of intermediates between modules. The third one, \(CF_{t}^{Factors}\) (6), is the aggregate cash flow for the purchase of products and supplies and for the sale and disposal of recyclables and residues.

$$Max\ NPV = \mathop \sum \limits_{m} DCF_{m}^{Invest} + \mathop \sum \limits_{t} (CF_{t}^{Operating} + CF_{t}^{Transport} + CF_{t}^{Factors} ) \cdot d_{t}$$


$$DCF_{m}^{Invest} = \mathop \sum \limits_{{t_{B} }} \mathop \sum \limits_{{t_{E} \ge t_{B} }} p_{{m,t_{B} ,t_{E} }}^{inv} \cdot \varvec{x}_{{\varvec{m},\varvec{t}_{\varvec{B}} ,\varvec{t}_{{\mathbf{E}}} }}\quad \forall \ m \in M,$$
$$CF_{t}^{Operating} = - \mathop \sum \limits_{m} \mathop \sum \limits_{a} p_{t,m,a}^{op} \cdot\varvec{\lambda}_{{\varvec{t},\varvec{m},\varvec{a}}} \quad \forall \ t \in T,$$
$$CF_{t}^{Transport} = - \left( {\mathop \sum \limits_{{f \in F_{P} }} a_{t,f} \cdot q_{t,f} \cdot \mathop \sum \limits_{i} \varvec{z}_{{\varvec{t},\varvec{i}}} \cdot p_{f,i,t}^{coll} + \mathop \sum \limits_{{m_{S} }} \mathop \sum \limits_{{m_{D} \in {\text{M}}{ \setminus }\{ m_{S} \} }} \mathop \sum \limits_{{f \in F_{P} \mathop \cup \nolimits F_{M} }} \varvec{y}_{{\varvec{t},\varvec{m}_{\varvec{S}} ,\varvec{f},\varvec{m}_{\varvec{D}} }}^{{\varvec{ship}}} \cdot p_{f,t}^{ship} } \right) \quad \forall \ t \in T,$$
$$CF_{t}^{Factors} = \mathop \sum \limits_{m} \mathop \sum \limits_{f} \left( {\varvec{y}_{{\varvec{t},\varvec{m},\varvec{f}}}^{{\varvec{in}}} \cdot p_{t,f}^{in} + \varvec{y}_{{\varvec{t},\varvec{m},\varvec{f}}}^{{\varvec{out}}} \cdot p_{t,f}^{out} } \right)\quad \forall \ t \in T.$$

The solution space of the model is constrained by the following side-conditions. Beyond these, non-negativity and binary constraints exist that correspond to the number systems and decision variables described above.

Product collection rate and availability constraint (7): the collection rate given for every product and period must be achieved exactly. The constraint assures that the aggregate input of products into the system (left-hand side of the equation) is equal to the rate of products that has to be collected (right-hand side).

$$\sum\limits_{m} {\varvec{y}_{{\varvec{t},\varvec{m},\varvec{f}}}^{{\varvec{in}}} } = a_{t,f} \cdot q_{t,f} \quad \forall \ t \in T ,\ f \in F_{P}$$

Acceptance constraint (8): product or intermediate \(f\) may be an input into a module \(m\) only if specified by \(c_{m,f}^{acc}\). \(BigM\) is a sufficiently large number, e.g. the upper limit of the underlying data type (signed doubleword: \(2^{31} - 1\)).

$$\varvec{y}_{{\varvec{t},\varvec{m},\varvec{f}}}^{{\varvec{in}}} + \mathop \sum \limits_{{m_{D} \in {\text{M}}{ \setminus }\{ m_{S} \} }} \varvec{y}_{{\varvec{t},\varvec{m}_{{\mathbf{S}}} ,\varvec{f},\varvec{m}_{\varvec{D}} }}^{{\varvec{ship}}} \le c_{m,f}^{acc} \cdot BigM\quad \forall \ t \in T,\ m_{S} \in M,\ f \in (F_{P} \mathop \cup \nolimits F_{M} )$$

Material-flow constraint (9): each factor that is input into a module has to be purchased externally (first term on the left-hand side of the equation) or delivered from another module (second term) and is consumed (supplies like energy) or is transformed into another factor analogously to the activities executed in the module (third term). The corresponding output is either delivered to other modules (first term on the right-hand side; only intermediates) or sold or disposed of externally (second term; intermediates, recyclables, and residues).

$$\varvec{y}_{{\varvec{t},\varvec{m},\varvec{f}}}^{{\varvec{in}}} + \mathop \sum \limits_{{m_{S} \in {\text{M}}{ \setminus }\{ m\} }} \varvec{y}_{{\varvec{t},\varvec{m}_{\varvec{S}} ,\varvec{f},\varvec{m}}}^{{\varvec{ship}}} + \mathop \sum \limits_{a}\varvec{\lambda}_{{\varvec{t},\varvec{m},\varvec{a}}} \cdot v_{m,a,f} = \mathop \sum \limits_{{m_{D} \in {\text{M}}{ \setminus }\{ m\} }} \varvec{y}_{{\varvec{t},\varvec{m},\varvec{f},\varvec{m}_{\varvec{D}} }}^{{\varvec{ship}}} + \varvec{y}_{{\varvec{t},\varvec{m},\varvec{f}}}^{{\varvec{out}}} \quad\forall\ t \in T,\ m \in M,\ f \in F$$

No short-circuits constraint (10): a factor may not be input and output at the same time in a module.

$$\varvec{y}_{{\varvec{t},\varvec{m},\varvec{f},\varvec{m}}}^{{\varvec{ship}}} = 0\quad \forall\ t \in T,\ m \in M,\ f \in F$$

Minimum recycling-rate constraint (11): the aggregate mass of factors that are rated as recyclables (\(F_{R}\)) and are brought to sinks outside the system boundary must be at least as high as the mass of products collected multiplied by the mandatory recycling-rate in that period, \(r_{t}\).

$$\mathop \sum \limits_{{f \in F_{R} }} \mathop \sum \limits_{m} m_{f} \cdot \varvec{y}_{{\varvec{t},\varvec{m},\varvec{f}}}^{{\varvec{out}}} \ge r_{t} \cdot \mathop \sum \limits_{{f \in F_{P} }} \mathop \sum \limits_{m} m_{f} \cdot \varvec{y}_{{\varvec{t},\varvec{m},\varvec{f}}}^{{\varvec{in}}} \quad\forall\ t \in T$$

Capacity constraint (12): the capacity required for the execution of activities in a certain period and module type (left-hand side of the equation) may not exceed the capacity of the module that is installed at the same time (right-hand side). On the left-hand side, the intensity of every activity that is executed in the specified module \(m\) and in the specified period \(t\) is multiplied with its corresponding capacity coefficient to obtain the aggregate capacity utilisation. On the right-hand side, the capacity installed at the specified period is determined by the double sum. For that, the number of modules that have been activated previously or simultaneously (\(t_{B} \le t\)) and that have not been deactivated previously (\(t_{E} \ge t\)) is multiplied with the technical capacity of each module.

$$\mathop \sum \limits_{a} c_{m,a} \cdot\varvec{\lambda}_{{\varvec{t},\varvec{m},\varvec{a}}} \le \mathop \sum \limits_{{t_{B} \le t}} \mathop \sum \limits_{{t_{E} \ge t}} \varvec{x}_{{\varvec{m},\varvec{t}_{\varvec{B}} ,\varvec{t}_{\varvec{E}} }} \cdot c_{m}^{max}\quad \forall\ t \in T, \ m \in M$$

Minimum operating-time constraint (13): where appropriate, a pre-set minimum time of operation of a module \(t_{m}^{min}\) has to be satisfied. Firstly, all intervals of operation are excluded that are shorter than the pre-set number of periods: let \(t_{B}\) be the first period of operation and \(t_{E}\) the last—so that \(\varDelta t = t_{E} - t_{B} + 1\) is the operating time—then the decision variable \(\varvec{x}_{{\varvec{m},\varvec{t}_{\varvec{B}} ,\varvec{t}_{\varvec{E}} }}\) may be greater than 0 only if \(t_{E} - t_{B} + 1 \ge t_{m}^{min}\), or \(t_{E} \ge t_{B} + t_{m}^{min} - 1\). Formulated as a constraint, all intervals shorter than that are excluded, so that \(\varvec{x}_{{\varvec{m},\varvec{t}_{\varvec{B}} ,\varvec{t}_{\varvec{E}} }}\) is 0 for all \(t_{E} \in \left\{ {t_{B} .. \left( {t_{B} + t_{m}^{min} - 2} \right)} \right\}\). Secondly, this rule is disabled for all intervals that end in the last period of the planning horizon (\(\bar{t}\)) by using a minimum function. This is to avoid the effect that investments are antedated only to achieve the minimum operating time, which would eventually occur due to the limited planning horizon.

$$\varvec{x}_{{\varvec{m},\varvec{t}_{\varvec{B}}, \varvec{t}_{\varvec{E}} }} = 0\quad\forall \ m \in M, \ t_B \in T, \ t_{E} \in \{ t_{B} ..{ \hbox{min} }(t_{B} + t_{m}^{min} - 2;\bar{t} - 1)\}$$

Collection cost level selection constraint (14): the collection cost level selected in a specified period must equal the number of installed collecting modules, which is determined analogously to (12) at the right-hand side of the equation. On the left-hand side, the index of the collection cost levels \(i\) is multiplied with the binary collection cost level variable \(\varvec{z}_{{\varvec{t},\varvec{i}}}\), which is 1 if and only if the collection level \(i\) is selected.

$$i \cdot \varvec{z}_{{\varvec{t},\varvec{i}}} = \mathop \sum \limits_{{m \in M_{c} }} \mathop \sum \limits_{{t_{B} \le t}} \mathop \sum \limits_{{t_{E} \ge t}} \varvec{x}_{{\varvec{m}, \varvec{t}_{\varvec{B}} ,\varvec{t}_{\varvec{E}} }}\quad \forall \ t \in T, \ i \in I$$

Collection cost level uniqueness constraint (15): exactly one collection cost level must be selected in every period.

$$\mathop \sum \limits_{i} \varvec{z}_{{\varvec{t},\varvec{i}}} = 1\quad \forall \ t \in T$$

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hoyer, C., Kieckhäfer, K. & Spengler, T.S. Technology and capacity planning for the recycling of lithium-ion electric vehicle batteries in Germany. J Bus Econ 85, 505–544 (2015).

Download citation


  • Strategic network design
  • Reverse logistics
  • Recycling
  • Lithium-ion batteries

JEL Classification

  • M11
  • K32
  • C61