Advertisement

Journal of Business Economics

, Volume 85, Issue 5, pp 505–544 | Cite as

Technology and capacity planning for the recycling of lithium-ion electric vehicle batteries in Germany

  • Claas HoyerEmail author
  • Karsten Kieckhäfer
  • Thomas S. Spengler
Research Article

Abstract

Currently, the German government strives for establishing Germany as a lead market for electric mobility. A successful growth of the electric vehicle market would be followed by a corresponding volume of spent lithium-ion batteries containing valuable and scarce metals. With their recycling, the high environmental load and energy use of primary production could be reduced, import dependencies could be diminished, and economic value could be created. Pioneering the mandatory deployment of an appropriate recycling network in Germany, the aim of this paper is to determine investment plans for the installation of recycling plants of different technologies and capacities and to derive recommendations for potential investors. For this purpose, a mathematical optimisation model is developed, allowing the economic selection of recycling technologies and capacities to be deployed in the network over time. In a comprehensive study, the impact of uncertain developments and mandatory minimum recycling rates on the timing of plant installations, on technology and capacity selection, on material flows, and on the profitability of recycling are analysed. The main finding is that despite the prevailing uncertainties a robust plan exists at least for initial decisions. It is shown that the recycling network can be operated highly economically in four out of five scenarios while meeting mandatory minimum recycling rates easily. By contrast, achieving both profitability and the minimum recycling rates will be a challenge if less valuable metals are used in the production of batteries, requiring the development of additional recycling steps to both reduce waste and increase profitability.

Keywords

Strategic network design Reverse logistics Recycling Lithium-ion batteries 

JEL Classification

M11 K32 C61 

Notes

Acknowledgments

We would like to acknowledge the support of the German Federal Ministry for the Environment, Nature Conservation and Nuclear Safety, funding the research projects LithoRec (16EM0023) and LithoRec II (16EM1024). We further greatly appreciate our industrial and scientific project partners for their valuable co-operation and assistance.

References

  1. Achillas C, Vlachokostas C, Aidonis D, Moussiopoulos Ν, Iakovou E, Banias G (2010) Optimising reverse logistics network to support policy-making in the case of electrical and electronic equipment. Waste Manag 30(12):2592–2600CrossRefGoogle Scholar
  2. Barros AI, Dekker R, Scholten V (1998) A two-level network for recycling sand: a case study. Eur J Oper Res 110(2):199–214CrossRefGoogle Scholar
  3. Dat LQ, Truc Linh DT, Chou S, Yu VF (2012) Optimizing reverse logistic costs for recycling end-of-life electrical and electronic products. Expert Syst Appl 39(7):6380–6387. http://www.sciencedirect.com/science/article/pii/S0957417411017027 CrossRefGoogle Scholar
  4. de Brito MP, Dekker R (2004) A framework for reverse logistics. In: Dekker R, Fleischmann M, Inderfurth K, Van Wassenhove LN (eds) Reverse logistics. Quantitative models for closed-loop supply chains. Springer, BerlinGoogle Scholar
  5. Debreu G (1959) Theory of value. An axiomatic analysis of economic equilibrium. Yale University Press; Wiley, New Haven, LondonGoogle Scholar
  6. Dobos I, Gobsch B, Pakhomova N, Pishchulov G, Richter K (2013) Design of contract parameters in a closed-loop supply chain. Cent Eur J Oper Res 21(4):713–727CrossRefGoogle Scholar
  7. European Commission (2012) Commission regulation (EU) No 493/2012 of 11 June 2012. Off J Eur Union 55(L 151):9–21Google Scholar
  8. Fleischmann M, Bloemhof-Ruwaard J, Dekker R, Ed Laan, Nunen J, Wassenhove L (1997) Quantitative models for reverse logistics a review. Eur J Oper Res 103(1):1–17CrossRefGoogle Scholar
  9. Fleischmann M, Krikke H, Dekker R, Flapper S (2000) A characterisation of logistics networks for product recovery. Omega 28(6):653–666CrossRefGoogle Scholar
  10. Fleischmann B, Ferber S, Henrich P (2006) Strategic planning of BMW’s global production network. Interfaces 36(3):194–208CrossRefGoogle Scholar
  11. Gaines L, Cuenca R. (2000) Costs of lithium–ion batteries for vehicles. http://www.transportation.anl.gov/pdfs/TA/149.pdf. Accessed 01 Aug 2014
  12. German Federal Government (2009) National electromobility development plan. http://www.bmu.de/fileadmin/bmu-import/files/pdfs/allgemein/application/pdf/nep_09_bmu_en_bf.pdf. Accessed 21 May 2013
  13. Hoyer C, Kieckhäfer K, Spengler TS (2011a) A strategic framework for the design of recycling networks for lithium–ion batteries from electric vehicles. In: Hesselbach J, Herrmann C (eds) Glocalized solutions for sustainability in manufacturing. Springer, Heidelberg, pp 79–84CrossRefGoogle Scholar
  14. Hoyer C, Kieckhäfer K, Spengler TS (2011b) Strategische Planung des Recyclings von Lithium-Ionen-Traktionsbatterien. In: Sucky E, Asdecker B, Dobhan A, Haas S, Wiese J (eds) Logistikmanagement. Herausforderungen, Chancen und Lösungen, vol 2. University of Bamberg Press, Bamberg:399–419Google Scholar
  15. Hoyer C, Kieckhäfer K, Spengler TS (2013) Impact of mandatory rates on the recycling of lithium–ion batteries from electric vehicles in Germany. In: Nee AYC, Song B, Ong S (eds) Re-engineering manufacturing for sustainability. Springer, Singapore, New York, pp 543–548CrossRefGoogle Scholar
  16. Hübner R (2007) Strategic supply chain management in process industries. An application to specialty chemicals production network design. Lecture notes in economics and mathematical systems, vol 594. Springer, BerlinGoogle Scholar
  17. Kelly DL, Marucheck AS (1984) Planning horizon results for the dynamic warehouse location problem. J Oper Manag 4(3):279–294CrossRefGoogle Scholar
  18. Klibi W, Martel A, Guitouni A (2010) The design of robust value-creating supply chain networks: a critical review. Eur J Oper Res 203(2):283–293CrossRefGoogle Scholar
  19. Koopmanns TC (1951) Analysis of production as an efficient combination of activities. In: Koopmanns TC (ed) Activity analysis of production and allocation. Proceedings of a conference. John Wiley & Sons, New York, pp 33–97Google Scholar
  20. Kwade A, Bärwaldt G (2012) LithoRec. Recycling von Lithium-Ionen-Batterien. Abschlussbericht des Verbundprojektes. Cuvillier, GöttingenGoogle Scholar
  21. Mafakheri F, Nasiri F (2013) Revenue sharing coordination in reverse logistics. J Clean Prod 59:185–196CrossRefGoogle Scholar
  22. Melo M, Nickel S, Saldanha-da-Gama F (2009) Facility location and supply chain management—a review. Eur J Oper Res 196(2):401–412CrossRefGoogle Scholar
  23. Paquet M, Martel A, Desaulniers G (2004) Including technology selection decisions in manufacturing network design models. Int J Comp Integ M 17(2):117–125CrossRefGoogle Scholar
  24. Peters MS, Timmerhaus KD, West RE (2004) Plant design and economics for chemical engineers, 5th edn., McGraw-Hill chemical engineering seriesMcGraw-Hill, BostonGoogle Scholar
  25. Pokharel S, Mutha A (2009) Perspectives in reverse logistics: a review. Resour Conserv Recycl 53(4):175–182CrossRefGoogle Scholar
  26. Rubio S, Chamorro A, Miranda FJ (2008) Characteristics of the research on reverse logistics (1995–2005). Int J Prod Res 46(4):1099–1120CrossRefGoogle Scholar
  27. Sasikumar P, Kannan G (2009) Issues in reverse supply chain, part III: classification and simple analysis. Int J Sustain Eng 2(1):2–27CrossRefGoogle Scholar
  28. Schultmann F, Engels B, Rentz O (2003) Closed-loop supply chains for spent batteries. Interfaces 33(6):57–71CrossRefGoogle Scholar
  29. Shih L (2001) Reverse logistics system planning for recycling electrical appliances and computers in Taiwan. Resour Conserv Recycl 32(1):55–72CrossRefGoogle Scholar
  30. Spengler TS, Rentz O (1996) Betriebswirtschaftliche Planungsmodelle zur Demontage und zum Recycling komplexer zusammengesetzter Produkte. Z Betriebswirtschaft(2):79–96Google Scholar
  31. Spengler TS, Püchert H, Penkuhn T, Rentz O (1997) Environmental integrated production and recycling management. Eur J Oper Res 97(2):308–326CrossRefGoogle Scholar
  32. Statistisches Bundesamt (2013) Güterbeförderung im Straßenverkehr. Einschl. Güterbeförderung im Straßenverkehr durch Speditionen (WZ 63.40.1). https://www-genesis.destatis.de/genesis/online. Accessed 12 Aug 2013
  33. Thierry M, Salomon M, van Nunen J, Van Wassenhove L (1995) Strategic issues in product recovery management. Calif Manag Rev 37(2):114–135CrossRefGoogle Scholar
  34. Verband der Chemischen Industrie e.V. (2012) Chemiewirtschaft in Zahlen 2012. https://www.vci.de/Downloads/Publikation/Chemiewirtschaft%20in%20Zahlen%202012.pdf. Accessed 12 Aug 2013
  35. Walther G, Spengler TS (2005) Impact of WEEE-directive on reverse logistics in Germany. Int J Phys Distrib Logist Manag 35(5):337–361CrossRefGoogle Scholar
  36. Walther G, Schmid E, Spengler TS (2008) Negotiation-based coordination in product recovery networks. Int J Prod Econ 111(2):334–350CrossRefGoogle Scholar
  37. Walther G, Schatka A, Spengler TS (2012) Design of regional production networks for second generation synthetic bio-fuel—a case study in Northern Germany. Eur J Oper Res 218(1):280–292CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Claas Hoyer
    • 1
    Email author
  • Karsten Kieckhäfer
    • 1
  • Thomas S. Spengler
    • 1
  1. 1.Institute of Automotive Management and Industrial ProductionTechnische Universität BraunschweigBraunschweigGermany

Personalised recommendations