Skip to main content
Log in

The influence of hyperpolarization-activated cation current on conduction delay and failure of action potentials along axon related to abnormal functions

  • Research Article
  • Published:
Cognitive Neurodynamics Aims and scope Submit manuscript

Abstract

Conduction delay and failure behaviors of action potentials with a high frequency along nerve fiber are related to the abnormal functions. For instance, upregulation of a hyperpolarization-activated cation current (Ih) is identified to reduce the conduction delay to recover the temporal encoding, and downregulation of the Ih current to enhance the conduction failure rate to ease the pain sensation, with the dynamic mechanisms remaining unclear. In the present paper, the dynamic mechanism is obtained in a chain network model with coupling strength (gc) and action potentials induced by periodic stimulations with a period (Ts). At first, as the action potentials exhibit a high frequency corresponding to a short Ts and the network has a small gc, i.e., a short and unrecovered afterpotential and a small coupling current, the conduction delay is reproduced. The conduction failure is reproduced for Ts shorter and gc smaller than those of the conduction delay, presenting a direct relationship between the two behaviors. Then, the conduction delay and failure are explained with the response time and current threshold of an action potential evoked from the unrecovered afterpotential. The prolonged response time for short Ts and small gc presents the cause for the conduction delay, and the enhanced threshold for shorter Ts and smaller gc presents the cause for the conduction failure. Furthermore, reduction of the delay and enhancement of the failure rate respectively induced by upregulation and downregulation of the Ih current are reproduced and explained. The positive Ih current induces Hopf bifurcation advanced and resting membrane potential elevated. Then, upregulation and downregulation of the Ih current induce the afterpotential elevated to shorten the response time and reduced to enhance the threshold, respectively. The results present nonlinear dynamics for the non-faithful conduction behaviors and dynamical mechanism for the modulation effect of the Ih current on the conduction delay and failure related to encoding and pain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data availability

The data used in this study are available upon request from the corresponding author.

References

Download references

Acknowledgements

This work was sponsored by the National Natural Science Foundation of China (Grant Numbers: 12072236 and 12202147) and Nature Science Foundation of Henan province (Grant Number: 212300410196)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huaguang Gu.

Ethics declarations

Conflict of interest

The authors indicate no conflicts of interest related to the content of this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, M., Gu, H. & Zhang, X. The influence of hyperpolarization-activated cation current on conduction delay and failure of action potentials along axon related to abnormal functions. Cogn Neurodyn (2024). https://doi.org/10.1007/s11571-024-10103-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11571-024-10103-2

Keywords

Navigation