Skip to main content
Log in

Random fluctuations and synaptic plasticity enhance working memory activities in the neuron–astrocyte network

  • Research Article
  • Published:
Cognitive Neurodynamics Aims and scope Submit manuscript

Abstract

Random fluctuations are inescapable feature in biological systems, but appropriate intensity of randomness can effectively facilitate information transfer and memory encoding within the nervous system. In the study, a modified spiking neuron–astrocyte network model with excitatory–inhibitory balance and synaptic plasticity is established. This model considers external input noise, and allows investigating the effects of intrinsic random fluctuations on working memory tasks. It is found that the astrocyte network, acting as a low-pass filter, reduces the noise component of the total input currents and improves the recovered images. The memory performance is enhanced by selecting appropriate intensity of random fluctuations, while excessive intensity can inhibit signal transmission of network. As the intensity of random fluctuations gradually increases, there exists a maximum value of the working memory performance. The cued recall of the network markedly decreases excessive input noise relative to test images. Meanwhile, a greater contrast effect is observed as the external input noise increases. In addition, synaptic plasticity reduces the firing rates and firing peaks of neurons, thus stabilizing the working memory activity during the test. The outcomes of this study may provide some inspirations for comprehending the role of random fluctuations in working memory mechanisms and neural information processing within the cerebral cortex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Availability of data and materials

All data generated or analyzed during this study are included in this published article.

References

  • Amit DJ, Bernacchia A, Yakovlev V (2003) Multiple-object working memory-a model for behavioral performance. Cereb Cortex 13(5):435–443

    Article  CAS  PubMed  Google Scholar 

  • Audhkhasi K, Osoba O, Kosko B (2016) Noise-enhanced convolutional neural networks. Neural Netw 78:15–23

    Article  PubMed  Google Scholar 

  • Baddeley A (2012) Working memory: theories, models, and controversies. Annu Rev Psychol 63:1–29

    Article  PubMed  Google Scholar 

  • Böttcher A, Wenzel D (2008) The Frobenius norm and the commutator. Linear Algebra Appl 429(8–9):1864–1885

    Article  Google Scholar 

  • Chandrasekar A, Radhika T, Zhu Q (2022) Further results on input-to-state stability of stochastic Cohen–Grossberg bam neural networks with probabilistic time-varying delays. Neural Process Lett 1–23

  • Chandrasekar A, Radhika T, Zhu Q (2022) State estimation for genetic regulatory networks with two delay components by using second-order reciprocally convex approach. Neural Process Lett 1–19

  • Chen N, Sugihara H, Sharma J, Perea G, Petravicz J, Le C, Sur M (2012) Nucleus basalis-enabled stimulus-specific plasticity in the visual cortex is mediated by astrocytes. Proc Natl Acad Sci 109(41):2832–2841

    Article  Google Scholar 

  • Constantinidis C, Klingberg T (2016) The neuroscience of working memory capacity and training. Nat Rev Neurosci 17(7):438–449

    Article  CAS  PubMed  Google Scholar 

  • Constantinidis C, Funahashi S, Lee D, Murray JD, Qi X-L, Wang M, Arnsten AF (2018) Persistent spiking activity underlies working memory. J Neurosci 38(32):7020–7028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Pittà M, Brunel N (2022) Multiple forms of working memory emerge from synapse-astrocyte interactions in a neuron-glia network model. Proc Natl Acad Sci 119(43):2207912119

    Article  Google Scholar 

  • Esir PM, Gordleeva SY, Simonov AY, Pisarchik AN, Kazantsev VB (2018) Conduction delays can enhance formation of up and down states in spiking neuronal networks. Phys Rev E 98(5):052401

    Article  Google Scholar 

  • Florian RV (2007) Reinforcement learning through modulation of spike-timing-dependent synaptic plasticity. Neural Comput 19(6):1468–1502

    Article  PubMed  Google Scholar 

  • Fu Y, Kang Y, Chen G (2020) Stochastic resonance based visual perception using spiking neural networks. Front Comput Neurosci 14:24

    Article  PubMed  PubMed Central  Google Scholar 

  • Funahashi S, Bruce CJ, Goldman-Rakic PS (1989) Mnemonic coding of visual space in the monkey’s dorsolateral prefrontal cortex. J Neurophysiol 61(2):331–349

    Article  CAS  PubMed  Google Scholar 

  • Fuster JM, Alexander GE (1971) Neuron activity related to short-term memory. Science 173(3997):652–654

    Article  CAS  PubMed  Google Scholar 

  • Giannakakis E, Han CE, Weber B, Hutchings F, Kaiser M (2020) Towards simulations of long-term behavior of neural networks: modeling synaptic plasticity of connections within and between human brain regions. Neurocomputing 416:38–44

    Article  PubMed  PubMed Central  Google Scholar 

  • Goldwyn JH, Shea-Brown E (2011) The what and where of adding channel noise to the Hodgkin–Huxley equations. PLoS Comput Biol 7(11):1002247

    Article  Google Scholar 

  • Gordleeva SY, Tsybina YA, Krivonosov MI, Ivanchenko MV, Zaikin AA, Kazantsev VB, Gorban AN (2021) Modeling working memory in a spiking neuron network accompanied by astrocytes. Front Cell Neurosci 15:631485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo Y, Wang L, Wei F, Tan J (2020) Stochastic resonance induced by gaussian white noise and lévy noise in simplified Fitzhugh–Nagumo neural system. Indian J Phys 94(10):1625–1632

    Article  Google Scholar 

  • Guo L, Liu D, Wu Y, Xu G (2023) Comparison of spiking neural networks with different topologies based on anti-disturbance ability under external noise. Neurocomputing 529:113–127

    Article  Google Scholar 

  • Hou Z, Ma J, Zhan X, Yang L, Jia Y (2021) Estimate the electrical activity in a neuron under depolarization field. Chaos Solitons Fractals 142:110522

    Article  Google Scholar 

  • Huynh-Thu Q, Ghanbari M (2008) Scope of validity of PSNR in image/video quality assessment. Electron Lett 44(13):800–801

    Article  Google Scholar 

  • Izhikevich EM (2003) Simple model of spiking neurons. IEEE Trans Neural Netw 14(6):1569–1572

    Article  CAS  PubMed  Google Scholar 

  • Jin LE, Wang M, Galvin VC, Lightbourne TC, Conn PJ, Arnsten AF, Paspalas CD (2018) mglur2 versus mglur3 metabotropic glutamate receptors in primate dorsolateral prefrontal cortex: postsynaptic mglur3 strengthen working memory networks. Cereb Cortex 28(3):974–987

    Article  PubMed  Google Scholar 

  • Joshi H, Jha BK (2022) 2d dynamic analysis of the disturbances in the calcium neuronal model and its implications in neurodegenerative disease. Cognit Neurodyn 1–12

  • Kanakov O, Gordleeva S, Ermolaeva A, Jalan S, Zaikin A (2019) Astrocyte-induced positive integrated information in neuron-astrocyte ensembles. Phys Rev E 99(1):012418

    Article  CAS  PubMed  Google Scholar 

  • Kang Y, Liu R, Mao X (2021) Aperiodic stochastic resonance in neural information processing with gaussian colored noise. Cogn Neurodyn 15:517–532

    Article  PubMed  Google Scholar 

  • Kastanenka KV, Moreno-Bote R, De Pittà M, Perea G, Eraso-Pichot A, Masgrau R, Poskanzer KE, Galea E (2020) A roadmap to integrate astrocytes into systems neuroscience. Glia 68(1):5–26

    Article  PubMed  Google Scholar 

  • Kawaguchi M, Mino H, Durand DM (2011) Stochastic resonance can enhance information transmission in neural networks. IEEE Trans Biomed Eng 58(7):1950–1958

    Article  PubMed  Google Scholar 

  • Kirischuk S, Héja L, Kardos J, Billups B (2016) Astrocyte sodium signaling and the regulation of neurotransmission. Glia 64(10):1655–1666

    Article  PubMed  Google Scholar 

  • Klingberg T (2010) Training and plasticity of working memory. Trends Cogn Sci 14(7):317–324

    Article  PubMed  Google Scholar 

  • Lines J, Martin ED, Kofuji P, Aguilar J, Araque A (2020) Astrocytes modulate sensory-evoked neuronal network activity. Nat Commun 11(1):3689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Logan S, Pharaoh GA, Marlin MC, Masser DR, Matsuzaki S, Wronowski B, Yeganeh A, Parks EE, Premkumar P, Farley JA et al (2018) Insulin-like growth factor receptor signaling regulates working memory, mitochondrial metabolism, and amyloid-\(\beta \) uptake in astrocytes. Mol Metab 9:141–155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu L, Gao Z, Wei Z, Yi M (2023) Working memory depends on the excitatory-inhibitory balance in neuron-astrocyte network. Chaos Interdiscip J Nonlinear Sci 33(1):013127

    Article  Google Scholar 

  • Lu L, Yi M, Gao Z, Wu Y, Zhao X (2023) Critical state of energy-efficient firing patterns with different bursting kinetics in temperature-sensitive Chay neuron. Nonlinear Dyn 8:1–11

    Google Scholar 

  • Maffeo C, Bhattacharya S, Yoo J, Wells D, Aksimentiev A (2012) Modeling and simulation of ion channels. Chem Rev 112(12):6250–6284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Makovkin SY, Shkerin I, Gordleeva SY, Ivanchenko M (2020) Astrocyte-induced intermittent synchronization of neurons in a minimal network. Chaos Solitons Fractals 138:109951

    Article  Google Scholar 

  • Mi Y, Katkov M, Tsodyks M (2017) Synaptic correlates of working memory capacity. Neuron 93(2):323–330

    Article  CAS  PubMed  Google Scholar 

  • Miller EK, Erickson CA, Desimone R (1996) Neural mechanisms of visual working memory in prefrontal cortex of the macaque. J Neurosci 16(16):5154–5167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mitroshina EV, Krivonosov MI, Burmistrov DE, Savyuk MO, Mishchenko TA, Ivanchenko MV, Vedunova MV (2020) Signatures of the consolidated response of astrocytes to ischemic factors in vitro. Int J Mol Sci 21(21):7952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nagy JI, Rash JE (2000) Connexins and gap junctions of astrocytes and oligodendrocytes in the CNS. Brain Res Rev 32(1):29–44

    Article  CAS  PubMed  Google Scholar 

  • Navarrete M, Perea G, Sevilla DF, Gómez-Gonzalo M, Núñez A, Martín ED, Araque A (2012) Astrocytes mediate in vivo cholinergic-induced synaptic plasticity. PLoS Biol 10(2):1001259

    Article  Google Scholar 

  • Nazari S, Amiri M, Faez K, Van Hulle MM (2019) Information transmitted from bioinspired neuron-astrocyte network improves cortical spiking network’s pattern recognition performance. IEEE Trans Neural Network Learn Syst 31(2):464–474

    Article  Google Scholar 

  • OIsen T, Capurro A, Švent M, Pilati N, Large C, Hartell N, Hamann M (2021) Sparsely distributed, pre-synaptic kv3 k+ channels control spontaneous firing and cross-unit synchrony via the regulation of synaptic noise in an auditory brainstem circuit. Front Cell Neurosci 15:721371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oliveira JF, Sardinha VM, Guerra-Gomes S, Araque A, Sousa N (2015) Do stars govern our actions? Astrocyte involvement in rodent behavior. Trends Neurosci 38(9):535–549

    Article  CAS  PubMed  Google Scholar 

  • Paukert M, Agarwal A, Cha J, Doze VA, Kang JU, Bergles DE (2014) Norepinephrine controls astroglial responsiveness to local circuit activity. Neuron 82(6):1263–1270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perea G, Sur M, Araque A (2014) Neuron-glia networks: integral gear of brain function. Front Cell Neurosci 8:378

    Article  PubMed  PubMed Central  Google Scholar 

  • Richetin K, Steullet P, Pachoud M, Perbet R, Parietti E, Maheswaran M, Eddarkaoui S, Bégard S, Pythoud C, Rey M et al (2020) Tau accumulation in astrocytes of the dentate gyrus induces neuronal dysfunction and memory deficits in Alzheimer’s disease. Nat Neurosci 23(12):1567–1579

    Article  CAS  PubMed  Google Scholar 

  • Roy K, Jaiswal A, Panda P (2019) Towards spike-based machine intelligence with neuromorphic computing. Nature 575(7784):607–617

    Article  CAS  PubMed  Google Scholar 

  • Santello M, Toni N, Volterra A (2019) Astrocyte function from information processing to cognition and cognitive impairment. Nat Neurosci 22(2):154–166

    Article  CAS  PubMed  Google Scholar 

  • Schummers J, Yu H, Sur M (2008) Tuned responses of astrocytes and their influence on hemodynamic signals in the visual cortex. Science 320(5883):1638–1643

    Article  CAS  PubMed  Google Scholar 

  • Sonoda K, Matsui T, Bito H, Ohki K (2018) Astrocytes in the mouse visual cortex reliably respond to visual stimulation. Biochem Biophys Res Commun 505(4):1216–1222

    Article  CAS  PubMed  Google Scholar 

  • Stobart JL, Ferrari KD, Barrett MJ, Glück C, Stobart MJ, Zuend M, Weber B (2018) Cortical circuit activity evokes rapid astrocyte calcium signals on a similar timescale to neurons. Neuron 98(4):726–735

    Article  CAS  PubMed  Google Scholar 

  • Tabareau N, Slotine J-J, Pham Q-C (2010) How synchronization protects from noise. PLoS Comput Biol 6(1):1000637

    Article  Google Scholar 

  • Tamil Thendral M, Ganesh Babu TR, Chandrasekar A, Cao Y (2022) Synchronization of Markovian jump neural networks for sampled data control systems with additive delay components: analysis of image encryption technique. Math Methods Appl Sci

  • Tsybina Y, Kastalskiy I, Krivonosov M, Zaikin A, Kazantsev V, Gorban AN, Gordleeva S (2022) Astrocytes mediate analogous memory in a multi-layer neuron-astrocyte network. Neural Comput Appl 34(11):9147–9160

    Article  Google Scholar 

  • Ullah G, Jung P, Cornell-Bell AH (2006) Anti-phase calcium oscillations in astrocytes via inositol (1, 4, 5)-trisphosphate regeneration. Cell Calcium 39(3):197–208

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Shi X (2020) Electric activities of time-delay memristive neuron disturbed by gaussian white noise. Cogn Neurodyn 14:115–124

    Article  PubMed  Google Scholar 

  • Yang X, Jia Y, Zhang L (2014) Impact of bounded noise and shortcuts on the spatiotemporal dynamics of neuronal networks. Physica A 393:617–623

    Article  Google Scholar 

  • Yang H, Xu G, Wang H (2022) Effects of magnetic fields on stochastic resonance in Hodgkin–Huxley neuronal network driven by gaussian noise and non-gaussian noise. Cognit Neurodyn 25:1–11

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (11675060, 12172340), the Fundamental Research Funds for the Central Universities, China University of Geosciences (Wuhan) (CUGQT2023001), the China Postdoctoral Science Foundation (2021M703011), and Zhejiang Provincial Natural Science Foundation of China (LQ23A010010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lulu Lu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, Z., Wu, L., Zhao, X. et al. Random fluctuations and synaptic plasticity enhance working memory activities in the neuron–astrocyte network. Cogn Neurodyn 18, 503–518 (2024). https://doi.org/10.1007/s11571-023-10002-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11571-023-10002-y

Keywords

Navigation