Skip to main content

Advertisement

Log in

Effects of exercise programs on neuroelectric dynamics in drug addiction

  • Research Article
  • Published:
Cognitive Neurodynamics Aims and scope Submit manuscript

Abstract

Exercise interventions have been considered to be an effective treatment for drug addiction. However, there is little dirct evidence that exercise affects brain activity in individuals afftected by drug addiction. Therefore, the aim of the present study was to investigate the effects of different exercise programs on detoxification. Cognitive recovery with 64-channel electroencephalography (EEG) recordings was obtained before and after three months of daily aerobic and anaerobic exercise. A total of 63 subjects with methamphetamine addiction were recruited and randomly divided into three groups for cognitive study in four behavioral states: an anaerobic resistance treatment group, an aerobic cycling treatment group and a control group. In addition, four behavioral states were examined: eyes-closed and eyes-open resting states, and exploratory behavior states following either drug- or neutral-cue exposure. Over a 12-week period,the alpha block ratio in the control group showed a slight decrease, while clear increases were observed in the resistance exercise and cycling treatment groups, particularly under the frontal and temporal regions in the eyes-open and drug-cue conditions. The major EEG activity frequency in the resistance treatment group during the drug-cue behavior task decreased compared with the frequencies of the cycling exercise and control groups. Meanwhile, the power of higher brain rhythms in the resistance treatment group was increased. Finally, the brain alpha wave left-lateralization index from EEG recording sites, F1–F2, in the resistance and cycling treatment groups under the eyes-closed condition positively decreased, while the control groups only showed slight decreases. Taken together, these results suggest that different types of exercise may induce distince and different positive therapeutic effects to facilitate detoxification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alper KR, Chabot RJ, Kim AH, Prichep LS, John ER (1990) Quantitative EEG correlates of crack cocaine dependence. Psychiatry Res Neuroimaging 35:95–105

    Article  CAS  Google Scholar 

  • Arazi H, Dadvand SS, Fard MT (2017) Neurotransmitters and cardiovascular responses to aerobic and resistance exercise in men addicted to methamphetamine Baltic. J Sport Health Sci 3:2–10

    Google Scholar 

  • Audiffren M, André N (2019) The exercise–cognition relationship: a virtuous circle. J Sport Health Sci 8:339–347

    Article  PubMed  PubMed Central  Google Scholar 

  • Broadhouse KM, Singh MF, Suo C, Gates N, Valenzuela M (2020) Hippocampal plasticity underpins long-term cognitive gains from resistance exercise in MCI. NeuroImage Clin 25:102182

    Article  PubMed  PubMed Central  Google Scholar 

  • Busse AL, Filho WJ, Magaldi RM, Coelho VA, Santarém JM (2008) Effects of resistance training exercise on cognitive performance in elderly individuals with memory impairment: results of a controlled trial. Einstein 6:402–407

    Google Scholar 

  • Ceballos NA, Bauer LO, Houston RJ (2009) Recent EEG and ERP findings in substance abusers. Clin EEG Neurosci 40:122–128

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen JL, Ros T, Gruzelier JH (2012) Dynamic changes of ICA-derived EEG functional connectivity in the resting state. Hum brain Mapp 34:852–868

    Article  PubMed  PubMed Central  Google Scholar 

  • Costa KG, Cabral DA, Hohl R, Fontes EB (2019) Rewiring the addicted brain through a psychobiological model of physical exercise. Front Psychiatry 10:600

    Article  PubMed  PubMed Central  Google Scholar 

  • Daniels JK et al (2010) Switching between executive and default mode networks in posttraumatic stress disorder: alterations in functional connectivity. J Psychiatry Neurosci JPN 35:258

    Article  PubMed  Google Scholar 

  • Erickson KI, Voss MW, Prakash RS, Basak C, Kramer AF (2011) Exercise training increases size of hippocampus and improves memory. Proc Natl Acad Sci 108:3017–3022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Etnier JL, Salazar W, Landers DM, Petruzzello SJ, Han M, Nowell P (1997) The influence of physical fitness and exercise upon cognitive functioning: a meta-analysis. J Sport Exerc Psychol 19:249–277

    Article  Google Scholar 

  • Fumoto M et al (2010) Ventral prefrontal cortex and serotonergic system activation during pedaling exercise induces negative mood improvement and increased alpha band in EEG. Behav Brain Res 213:1–9. https://doi.org/10.1016/j.bbr.2010.04.017

    Article  CAS  PubMed  Google Scholar 

  • Hagemann D, Naumann E, Becker G, Maier S, Bartussek D (1998) Frontal brain asymmetry and affective style: a conceptual replication. Psychophysiology 35:372–388

    Article  CAS  PubMed  Google Scholar 

  • Henriques JB, Davidson RJ (1990) Regional brain electrical asymmetries discriminate between previously depressed and healthy control subjects. J Abnorm Psychol 99:22

    Article  CAS  PubMed  Google Scholar 

  • Hyder F, Rothman DL, Bennett MR (2013) Cortical energy demands of signaling and nonsignaling components in brain are conserved across mammalian species and activity levels. Proc Natl Acad Sci USA 110:3549–3554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hyman SE, Malenka RC, Nestler EJ (2006) Neural mechanisms of addiction: the role of reward-related learning and memory. Annu Rev Neurosci 29:565–598

    Article  CAS  PubMed  Google Scholar 

  • Kelley AE (2004) Ventral striatal control of appetitive motivation: role in ingestive behavior and reward-related learning. Neurosci Biobehav Rev 27:765–776. https://doi.org/10.1016/j.neubiorev.2003.11.015

    Article  PubMed  Google Scholar 

  • Khajehpour H, Mohagheghian F, Ekhtiari H, Makkiabadi B, Jafari AH, Eqlimi E, Harirchian MH (2019) Computer-aided classifying and characterizing of methamphetamine use disorder using resting-state EEG. Cogn Neurodyn 13:519–530. https://doi.org/10.1007/s11571-019-09550-z

    Article  PubMed  PubMed Central  Google Scholar 

  • Klimesch W, Doppelmayr M, Russegger H, Pachinger T, Schwaiger J (1998) Induced alpha band power changes in the human EEG and attention. Neurosci Lett 244:73–76

    Article  CAS  PubMed  Google Scholar 

  • Koya E, Uejima JL, Wihbey KA, Bossert JM, Hope BT, Shaham Y (2009) Role of ventral medial prefrontal cortex in incubation of cocaine craving. Neuropharmacology 56(Suppl 1):177–185. https://doi.org/10.1016/j.neuropharm.2008.04.022

    Article  CAS  PubMed  Google Scholar 

  • Lanius RA et al (2010) Default mode network connectivity as a predictor of post-traumatic stress disorder symptom severity in acutely traumatized subjects. Acta Psychiatr Scand 121:33–40. https://doi.org/10.1111/j.1600-0447.2009.01391.x

    Article  CAS  PubMed  Google Scholar 

  • Luan X, Tian X, Zhang H, Huang R, Li N, Chen P, Wang R (2019) Exercise as a prescription for patients with various diseases. J Sport Health Sci 8:422–441

    Article  PubMed  PubMed Central  Google Scholar 

  • Millett D (2001) Hans Berger: from psychic energy to the EEG. Perspect Biol Med 44:522–542

    Article  CAS  PubMed  Google Scholar 

  • Mooney LJ et al (2014) Exercise for methamphetamine dependence: rationale, design, and methodology. Contemp Clin Trials 37:139–147

    Article  PubMed  Google Scholar 

  • Morais APD, Pita IR, Fontes-Ribeiro CA, Pereira FC (2018) The neurobiological mechanisms of physical exercise in methamphetamine addiction. CNS Neurosci Ther 24:85–97

    Article  PubMed  Google Scholar 

  • Moran JM, Kelley WM, Heatherton TF (2013) What can the organization of the brain’s default mode network tell us about self-knowledge? Front Hum Neurosci 7:391

    PubMed  PubMed Central  Google Scholar 

  • Mumtaz W, Vuong PL, Malik AS, Rashid RBA (2017) A review on EEG-based methods for screening and diagnosing alcohol use disorder. Cognit Neurodyn 12:141–156

    Article  Google Scholar 

  • Nakagawa T, Ukai K, Ohyama T, Gomita Y, Okamura H (2000) Effect of dopaminergic drugs on the reserpine-induced lowering of hippocampal theta wave frequency in rats. Nihon shinkei seishin yakurigaku zasshi = Jpn J Psychopharmacol 20:71–76

    CAS  Google Scholar 

  • Nelissen K, Luppino G, Vanduffel W, Rizzolatti G, Orban GA (2005) Observing others: multiple action representation in the frontal lobe. Science 310:332–336

    Article  CAS  PubMed  Google Scholar 

  • Newton TF, Cook IA, Kalechstein AD, Duran S, Monroy F, Ling W, Leuchter AF (2003) Quantitative EEG abnormalities in recently abstinent methamphetamine dependent individuals. Clin Neurophysiol 114:410–415

    Article  PubMed  Google Scholar 

  • Nielsen JA, Zielinski BA, Ferguson MA, Lainhart JE, Anderson JS (2013) An evaluation of the left-brain right-brain hypothesis with resting state functional connectivity magnetic resonance imaging. PloS ONE 8:e71275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Onton J, Delorme A, Makeig S (2005) Frontal midline EEG dynamics during working memory. Neuroimage 27:341–356. https://doi.org/10.1016/j.neuroimage.2005.04.014

    Article  PubMed  Google Scholar 

  • Pasqualina PC, Perrig WJ, Rolf E, Staehelin HB, Franziska K (1998) The effects of resistance training on well-being and memory in elderly volunteers. Age Ageing 27:469–475

    Article  Google Scholar 

  • Pfurtscheller G (1986) Event-related desynchronization mapping: visualization of cortical activation patterns. In: Duffy FH (ed) Topographic mapping of brain electrical activity. Elsevier, Amsterdam, pp 99–111

    Chapter  Google Scholar 

  • Pfurtscheller G (1992) Event-related synchronization (ERS): an electrophysiological correlate of cortical areas at rest. Electroencephalogr Clin Neurophysiol 83:62–69

    Article  CAS  PubMed  Google Scholar 

  • Prichep LS, Alper KR, Kowalik S, Merkin H, Tom M, John ER, Rosenthal MS (1996) Quantitative electroencephalographic characteristics of crack cocaine dependence. Biol Psychiat 40:986–993

    Article  CAS  PubMed  Google Scholar 

  • Raichle ME, MacLeod AM (2001) A default mode of brain function. Proc Natl Acad Sci USA 98:676–682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rawson RA et al (2015) The impact of exercise on depression and anxiety symptoms among abstinent methamphetamine-dependent individuals in a residential treatment setting. J Subst Abuse Treat 57:36–40

    Article  PubMed  PubMed Central  Google Scholar 

  • Roemer RA, Cornwell A, Dewart D, Jackson P, Ercegovac DV (1995) Quantitative electroencephalographic analyses in cocaine-preferring polysubstance abusers during abstinence. Psychiatry Res 58:247–257

    Article  CAS  PubMed  Google Scholar 

  • Sayette MA, Shiffman S, Tiffany ST, Niaura RS, Martin CS, Schadel WG (2000) The measurement of drug craving. Addiction 95:189–210

    Article  Google Scholar 

  • Schlicht W (1994) Does physical exercise reduce anxious emotions? A meta-analysis. Anxiety Stress Coping 6:275–288

    Article  Google Scholar 

  • Singh NA, Clements KM, Fiatarone MA (1997) A randomized controlled trial of progressive resistance training in depressed elders. J Gerontol A Biol Sci Med Sci 52:M27

    Article  CAS  PubMed  Google Scholar 

  • Smith MA, Lynch WJ (2012) Exercise as a potential treatment for drug abuse: evidence from preclinical studies. Front Psychiatry 2:82

    Article  PubMed  PubMed Central  Google Scholar 

  • Stimpson NJ, Davison G, Javadi AH (2018) Joggin’ the Noggin: towards a physiological understanding of exercise-induced cognitive. Benefits Neurosci Biobehav Rev 88:177–186

    Article  PubMed  Google Scholar 

  • Stoutenberg M, Rethorst CD, Lawson O, Read JP (2016) Exercise training: a beneficial intervention in the treatment of alcohol use disorders? Drug Alcohol Depend 160:2–11

    Article  PubMed  Google Scholar 

  • Tarai S, Mukherjee R, Gupta S, Rizvanov AA, Palotás A, Chandrasekhar Pammi VS, Bit A (2019) Influence of pharmacological and epigenetic factors to suppress neurotrophic factors and enhance neural plasticity in stress and mood disorders. Cognit Neurodyn 13:219–237

    Article  Google Scholar 

  • Ten Brinke LF, Bolandzadeh N, Nagamatsu LS, Hsu CL, Davis JC, Miran-Khan K, Liu-Ambrose T (2015) Aerobic exercise increases hippocampal volume in older women with probable mild cognitive impairment: a 6-month randomised controlled trial British. J Sports Med 49:248–254

    Google Scholar 

  • Tomarken AJ, Davidson RJ, Wheeler RE, Kinney L (1992) Psychometric properties of resting anterior EEG asymmetry: temporal stability and internal consistency. Psychophysiology 29:576–592

    Article  CAS  PubMed  Google Scholar 

  • Tumeh S, Nagel J, English R, Moore M, Holman B (1990) Cerebral abnormalities in cocaine abusers: demonstration by SPECT perfusion brain scintigraphy. Work Prog Radiol 176:821–824

    CAS  Google Scholar 

  • Volkow ND, Hitzemann R, Wang GJ, Fowler JS, Wolf AP, Dewey SL, Handlesman L (1992) Long-term frontal brain metabolic changes in cocaine abusers. Synapse 11:184–190

    Article  CAS  PubMed  Google Scholar 

  • Wang C, Yu JT, Wang HF, Tan CC, Meng XF, Tan L (2014) Non-pharmacological interventions for patients with mild cognitive impairment: a meta-analysis of randomized controlled trials of cognition-based and exercise interventions. J Alzheimers Dis Jad 42:663–678

    Article  PubMed  Google Scholar 

  • Wang D, Zhou C, Chang Y-K (2015a) Acute exercise ameliorates craving and inhibitory deficits in methamphetamine: an ERP study. Physiol Behav 147:38–46

    Article  CAS  PubMed  Google Scholar 

  • Wang GY, Kydd R, Wouldes TA, Jensen M, Russell BR (2015b) Changes in resting EEG following methadone treatment in opiate addicts clinical neurophysiology official. J Int Fed Clin Neurophysiol 126:943–950

    Article  Google Scholar 

  • Wang D, Zhu T, Zhou C, Chang Y-K (2017) Aerobic exercise training ameliorates craving and inhibitory control in methamphetamine dependencies: a randomized controlled trial and event-related potential study. Psychol Sport Exerc 30:82–90

    Article  Google Scholar 

  • Weidong W et al (2019) L-menthol exhibits antidepressive-like effects mediated by the modification of 5-HTergic, GABAergic and DAergic systems. Cognit Neurodyn 13:191–200

    Article  Google Scholar 

  • Whitfield-Gabrieli S, Moran JM, Nieto-Castañón A, Triantafyllou C, Saxe R, Gabrieli JD (2011) Associations and dissociations between default and self-reference networks in the human brain. Neuroimage 55:225–232

    Article  PubMed  Google Scholar 

  • Yalachkov Y, Kaiser J, Naumer MJ (2010) Sensory and motor aspects of addiction. Behav Brain Res 207:215–222

    Article  PubMed  Google Scholar 

  • Yamamoto J (1997) Cortical and hippocampal EEG power spectra in animal models of schizophrenia produced with methamphetamine, cocaine, and phencyclidine. Psychopharmacology 131:379–387

    Article  CAS  PubMed  Google Scholar 

  • Young J, Angevaren M, Rusted J, Tabet N (2015) Aerobic exercise to improve cognitive function in older people without known cognitive impairment. Cochrane Database Syst Rev 4:81

    Google Scholar 

  • Yuguo Y et al (2017) Evaluating the gray and white matter energy budgets of human brain function. J Cereb Blood Flow Metab Off 38:1339–1353

    Google Scholar 

  • Zhou Y, Lu Y, Jin X, Liu J, Finlayson G, Zhou C (2019) Effects of moderate-and high-intensity acute aerobic exercise on food reward and appetite in individuals with methamphetamine dependence. Physiol Behav 211:112649

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

YY thanks for the support from the National Natural Science Foundation of China (81761128011), Shanghai Municipal Science and Technology Major Project (No. 2018SHZDZX01) and ZJLab, the program for the Professor of Special Appointment (Eastern Scholar SHH1140004) at Shanghai Institutions of Higher Learning. CZ thanks for the support from National Social Science Foundation of China (17ZDA330).

Author information

Authors and Affiliations

Authors

Contributions

C.Z and Y.Y. supervised the research, Y.L., Y.C., Q.Z. Y.Y. and C.Z. designed the research, Y.L., Q.Z., Y.C., Q.X., Y.L., and X.L. performed the research, Q.X., Y.L., Y.C., Y.L., and Y.Y. wrote the analysis tools and analysed the data, Y.L., Q.X., Q.Z., Y.C., Y.L., X.L., Y.Y. and C.Z. wrote the paper.

Corresponding authors

Correspondence to Yuguo Yu or Chengling Zhou.

Ethics declarations

Conflict of interest

The authors declare no competing financial interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 44 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, Y., Qi, X., Zhao, Q. et al. Effects of exercise programs on neuroelectric dynamics in drug addiction. Cogn Neurodyn 15, 27–42 (2021). https://doi.org/10.1007/s11571-020-09647-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11571-020-09647-w

Keywords

Navigation