Skip to main content

The thermodynamic brain and the evolution of intellect: the role of mental energy

Abstract

The living state is low entropy, highly complex organization, yet it is part of the energy cycle of the environment. Due to the recurring presence of the resting state, stimulus and its response form a thermodynamic cycle of perception that can be modeled by the Carnot engine. The endothermic reversed Carnot engine relies on energy from the environment to increase entropy (i.e., the synaptic complexity of the resting state). High entropy relies on mental energy, which represents intrinsic motivation and focuses on the future. It increases freedom of action. The Carnot engine can model exothermic, negative emotional states, which direct the focus on the past. The organism dumps entropy and energy to its environment, in the form of aggravation, anxiety, criticism, and physical violence. The loss of mental energy curtails freedom of action, forming apathy, depression, mental diseases, and immune problems. Our improving intuition about the brain’s intelligent computations will allow the development of new treatments for mental disease and novel find applications in robotics and artificial intelligence.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Abdallah CG, Jackowski A, Sato JR et al (2015) Prefrontal cortical GABA abnormalities are associated with reduced hippocampal volume in major depressive disorder. Eur Neuropsychopharmacol 25:1082–1090

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Aknin LB, Hamlin JK, Dunn EW (2012) Giving leads to happiness in young children. PLoS ONE 7(6):e39211

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Allen M, Friston KJ (2016) From cognitivism to autopoiesis: towards a computational framework for the embodied mind. Synthese 1–24

  4. Amlerova J et al (2017) Recognition of emotions from voice in mild cognitive impairment and Alzheimer’s disease dementia. Alzheimers Dement 13(7):1148

    Google Scholar 

  5. Apostolova LG, Akopyan GG, Partiali N, Steiner CA, Dutton RA, Hayashi KM, Dinov I, Toga AW, Cummings JL, Thompson PM (2007) Structural correlates of apathy in Alzheimer’s disease. Dement Geriatr Cogn Disord 24:91–97

    PubMed  Google Scholar 

  6. Atasoy S, Donnelly I, Pearson J (2016) Human brain networks function in connectome specific harmonic waves. Nat Commun 7:10340

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Barbey AK, Colom R, Grafman J (2014) Distributed neural system for emotional intelligence revealed by lesion mapping. Soc Cogn Affect Neurosci 9(3):265–272

    PubMed  Google Scholar 

  8. Bastos AM, Briggs F, Alitto HJ, Mangun GR, Usrey WM (2014) Simultaneous recordings from the primary visual cortex and lateral geniculate nucleus reveal rhythmic interactions and a cortical source for gamma-band oscillations. J Neurosci 34(22):7639–7644

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Belavkin RV, Ritter FE (2003) The use of entropy for analysis and control of cognitive models. In: F. Detje, D. Doerner, H. Schaub (eds) Proceedings of the fifth international conference on cognitive modeling. Bamberg, pp 21–26

  10. Bertoux M, de Souza LC, Zamith P, Dubois B, Bourgeois-Gironde S (2015) Discounting of future rewards in behavioural variant frontotemporal dementia and Alzheimer’s disease. Neuropsychology 29(6):933–939

    PubMed  Google Scholar 

  11. Bethell EJ, Holmes A, MacLarnon A, Semple S (2012) Evidence that emotion mediates social attention in Rhesus Macaques. PLoS ONE 7(8):e44387

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Betzel RF, Gu S, Medaglia JD, Pasqualetti F, Bassett DS (2016) Optimally controlling the human connectome: the role of network topology. Sci Rep 6:30770

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Biro PA, Stamps JA (2008) Are animal personality traits linked to life-history productivity? Trends in Ecol Evol 23:361–368

    Google Scholar 

  14. Bliss TV, Lømo T (1973) Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. J Physiol 232(2):331–356

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Boehm JK, Lyubomirsky S (2008) Does happiness promote career success? J Career Assess 16:101–116

    Google Scholar 

  16. Boolani A, O’Connor PJ, Reid J et al (2019) Predictors of feelings of energy differ from predictors of fatigue. Fatigue Biomed Health Behav 7(1):12–28

    Google Scholar 

  17. Bourgin J, Guyader N, Chauvin A, Juphard A, Sauvée M, Moreaud O, Silvert L, Hot P (2018) Early emotional attention is impacted in Alzheimer’s disease: an eye-tracking study. J Alzheimers Dis 63(4):1445–1458

    PubMed  Google Scholar 

  18. Buzsaki G, Logothetis N, Singer W (2013) Scaling brain size, keeping timing: evolutionary preservation of brain rhythms. Neuron 80(4):751–764

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Camerer CF, Hogarth RM (1999) The effects of financial incentives in experiments: a review and capital-labor production framework. J Risk Uncertain 19:7–42

    Google Scholar 

  20. Cameron D, Hutcherson C, Ferguson A, Scheffer JA, Hadjiandreou E, Inzlicht M (2017) Empathy is hard work: people choose to avoid empathy because of its cognitive costs. J Exp Psychol General 2887903

  21. Careau V, Garland T Jr (2012) Performance, personality, and energetics: correlation, causation, and mechanism. Physiol Biochem Zool 85:543–571

    PubMed  Google Scholar 

  22. Cavanagh JF, Frank MJ (2014) Frontal theta as a mechanism for cognitive control. Trends Cogn Sci 18(8):414–421

    PubMed  PubMed Central  Google Scholar 

  23. Charney DS (2016) Reduced global functional connectivity of the medial prefrontal cortex in major depressive disorder. Hum Brain Mapp 37(9):3214–3223

    PubMed  PubMed Central  Google Scholar 

  24. Chen KH, Lwi SJ, Hua AY, Haase CM, Miller BL, Levenson RW (2017) Increased subjective experience of non-target emotions in patients with frontotemporal dementia and Alzheimer’s disease. Curr Opin Behav Sci 15:77–84

    PubMed  PubMed Central  Google Scholar 

  25. Coutinho D, Goncalves B, Wong DP, Travassos B, Coutts AJ, Sampaio J (2018) Exploring the effects of mental and muscular fatigue in soccer players’ performance. Hum Mov Sci 58:287–296

    PubMed  Google Scholar 

  26. Cox RT (1979) Of inference and inquiry, an essay in inductive logic. In: Proceedings of the maximum entropy formalism—first maximized entropy workshop, Boston, MA, USA, pp 119–168

  27. Csikszentmihalyi M, Hunter J (2003) Happiness in everyday life: the uses of. J Happiness Stud 4:185–199

    Google Scholar 

  28. D’Acquisto F (2017) Affective immunology: where emotions and the immune response converge. Dialogues Clin Neurosci 19(1):9–19

    PubMed  PubMed Central  Google Scholar 

  29. Day MV, Bobocel DR (2013) The weight of a guilty conscience: subjective body weight as an embodiment of guilt. PLoS ONE 8(7):e69546

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Deci EL, Koestner R, Ryan RM (1999) A meta-analytic review of experiments examining the effects of extrinsic rewards on intrinsic motivation. Psychol Bull 125:627–668

    CAS  PubMed  Google Scholar 

  31. Deli E (2015) The science of consciousness: how a new understanding of time and space infers the evolution of the mind. Self-Published Hungary/USA

  32. Deli E (2020) Can the fermionic mind hypothesis (fmh) explain consciousness the physics of selfhood. Act Nerv Super. https://doi.org/10.1007/s41470-020-00070-4

    Article  Google Scholar 

  33. Deli E, Peters J, Tozzi A (2018) The thermodynamic analysis of neural computation. J Neurosci Clin Res 3:1

    Google Scholar 

  34. DeYoung CG (2013) The neuromodulator of exploration: a unifying theory of the role of dopamine in personality. Front Hum Neurosci 7:762

    PubMed  PubMed Central  Google Scholar 

  35. Diener Ed, Chan MY (2011) Happy people live longer: subjective well-being contributes to health and longevity. Appl Psychol: Health Well-Being 3(1):1–43

    Google Scholar 

  36. Di Domenico SI, Ryan RM (2017) The emerging neuroscience of intrinsic motivation: a new frontier in self-determination research. Front Hum Neurosci 11:145

    PubMed  PubMed Central  Google Scholar 

  37. Drago V, Foster PS, Chanei L, Rembisz J, Meador K, Finney G (2010) Emotional indifference in Alzheimer’s disease. J Neuropsychiatry Clin Neurosci 22:236–242

    CAS  PubMed  Google Scholar 

  38. Fang H, He B, Fu H, Zhang H, Mo Z, Meng L (2018) A surprising source of self-motivation: prior competence frustration strengthens one’s motivation to win in another competence-supportive activity. Front Hum Neurosci 12:314

    PubMed  PubMed Central  Google Scholar 

  39. Fingelkurts AA, Fingelkurts AA (2014) Present moment, past, and future: mental kaleidoscope. Front Psychol 5:395

    PubMed  PubMed Central  Google Scholar 

  40. Fredericks CA, Sturm VE, Brown JA, Hua AY, Bilgel M et al (2018) Early affective changes and increased connectivity in preclinical Alzheimer’s disease. Alzheimers Dement (Amst) 10:471–479

    Google Scholar 

  41. Fredrickson BL, Joiner T (2002) Positive emotions trigger upward spirals toward emotional well-being. Am Psychol Soc 13(2):172–175

    Google Scholar 

  42. Friston KJ (2012) A free energy principle for biological systems. Entropy 14:2100–2121

    Google Scholar 

  43. Friston KJ (2018) Active inference and cognitive consistency. Psychol Inq 29(2):67–73. https://doi.org/10.1080/1047840x.2018.1480693

    Article  PubMed  PubMed Central  Google Scholar 

  44. Friston K, FitzGerald T, Rigoli F, Schwartenbeck P, Pezzulo G (2017) Active inference: a process theory. Neural Comput 29(1):1–49. https://doi.org/10.1162/NECO_a_00912

    Article  PubMed  Google Scholar 

  45. Fry R (2017) Physical intelligence and thermodynamic computing. Entropy 19:107

    Google Scholar 

  46. Gabora L (2016) A possible role for entropy in creative cognition. In: Proceedings of the 3rd international electronic conference on entropy and its applications, 1–10 November; Sciforum Electronic Conference Series 3, E001, https://doi.org/10.3390/ecea-3-e001

  47. Gehring WJ, Coles MGH, Meyer DE, Donchin E (2018) The error-related negativity: an event-related brain potential accompanying errors. Psychophysiology 27:S34

    Google Scholar 

  48. Gottlieb J, Oudeyer PY (2018) Towards a neuroscience of active sampling and curiosity. Nat Rev Neurosci 19(12):758–770

    CAS  PubMed  Google Scholar 

  49. Gray JR, Thompson PM (2004) Neurobiology of intelligence: health implications? Discov Med 4:157–162

    PubMed  Google Scholar 

  50. Grieder M, Wang D, Dierks T, Wahlund LO, Jann K (2018) Default mode network complexity and cognitive decline in mild Alzheimer’s disease. Front Neurosci 12:770

    PubMed  PubMed Central  Google Scholar 

  51. Grolnick WS, Ryan RM (1987) Autonomy in children’s learning: an experimental and individual difference investigation. J Pers Soc Psychol 52:890–898

    CAS  PubMed  Google Scholar 

  52. Haier RJ, Siegel BV, Nuechterlein KH, Hazlett E, Wu JC, Paek J, Browning HL, Buchsbaum MS (1988) Cortical glucose metabolic rate correlates of abstract reasoning and attention studied with positron emission tomography. Intelligence 12(2):199–217

    Google Scholar 

  53. Hamilton KR, Mitchell MR, Wing VC, Balodis IM, Bickel WK, Fillmore M, Moeller FG (2015) Choice impulsivity: definitions, measurement issues, and clinical implications. Pers Disord 6(2):182–198

    Google Scholar 

  54. Heintzelman SJ, Trent J, King LA (2013) Encounters with objective coherence and the experience of meaning in life. Psychol Sci 24:991–998

    PubMed  Google Scholar 

  55. Hesse J, Gross T (2014) Self-organized criticality as a fundamental property of neural systems. Front Syst Neurosci 23(8):166

    Google Scholar 

  56. Hirsh JB, Mar RA, Peterson JB (2012) Psychological entropy: a framework for understanding uncertainty-related anxiety. Psychol Rev 119:304–320

    PubMed  Google Scholar 

  57. Hogeveen J, Krug MK, Elliott MV, Solomon M (2018) Insula-retrosplenial cortex overconnectivity increases internalizing via reduced insight in autism. Biol Psychiatry 84:287–294

    PubMed  PubMed Central  Google Scholar 

  58. Inzlicht M, Bartholow BD, Hirsh JB (2015) Emotional foundations of cognitive control. Trends Cogn Sci 19(3):126–132

    PubMed  PubMed Central  Google Scholar 

  59. Inzlicht M, Shenhav A, Olivola CY (2018) The effort paradox: effort is both costly and valued. Trends Cogn Sci 22(4):337–349

    PubMed  PubMed Central  Google Scholar 

  60. Joffily M, Coricelli G (2013) Emotional valence and the free-energy principle. PLoS Comput Biol 9(6):e1003094. https://doi.org/10.1371/journal.pcbi.1003094

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  61. Jones DT, Machulda MM, Vemuri P, Mcdade EM, Zeng G, Senjem ML et al (2011) Age-related changes in the default mode network are more advanced in Alzheimer disease. Neurology 77:1524–1531

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Kaczmarek LD, Behnke M, Kashdan TB, Kusiak A, Marzec K, Mistrzak M, Włodarczyk M (2017) Smile intensity in social networking profile photographs is related to greater scientific achievements. J Posit Psychol 1–5

  63. Kaiser RH, Whitfield S, Gabrieli DG et al (2016) Dynamic resting-state functional connectivity in major depression. Neuropsychopharmacol 41(7):1822–1830

    CAS  Google Scholar 

  64. Kao F-C, Wang SR, Chang YJ (2015) Brainwaves analysis of positive and negative emotions. ISAA 12:1263–1266

    Google Scholar 

  65. Kiang M, Christensen BK, Remington G, Kapur S (2003) Apathy in schizophrenia: clinical correlates and association with functional outcome. Schizophr Res 63:79–88

    PubMed  Google Scholar 

  66. Kiefer M, Pulvermüller F (2012) Conceptual representations in mind and brain: theoretical developments, current evidence and future directions. Cortex 48:805–825

    PubMed  Google Scholar 

  67. Kobayashi K, Hsu M (2019) Common neural code for reward and information value. Proc Natl Acad Sci. https://doi.org/10.1073/pnas.1820145116

    Article  PubMed  Google Scholar 

  68. Koechlin EC (2007) Summerfield an information theoretical approach to prefrontal executive function. Trends Cogn Sci 11:229–235

    PubMed  Google Scholar 

  69. Köhler S, Schumann A, Cruz FD, Wagner G, Bär K-J (2018) Towards response success prediction: an integrative approach using high-resolution fMRI and autonomic indices. Neuropsychologia 119:182–190

    PubMed  Google Scholar 

  70. Koivumaa-Honkanen H, Koskenvuo M, Honkanen RJ, Viinamäki H, Heikkilä K, Kaprio J (2004) Life dissatisfaction and subsequent work disability in an 11-year follow-up. Psychol Med 34:221–228

    CAS  PubMed  Google Scholar 

  71. Kool W, Botvinick M (2018) Mental labour. Nat Hum Behav. https://doi.org/10.1038/s41562-018-0401-9

    Article  PubMed  Google Scholar 

  72. Kopec AM et al (2019) Neuro-immune mechanisms regulating social behavior: dopamine as mediator? Trends Neurosci 42(5):337–348

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Kounios J, Beeman M (2009) The aha! moment: the cognitive neuroscience of insight. Curr Dir Psychol Sci 18(4):210–216

    Google Scholar 

  74. Kumfor F, Zhen A, Hodges JR, Piguet O, Irish M (2018) Apathy in Alzheimer’s disease and frontotemporal dementia: distinct clinical profiles and neural correlates. Cortex 103:350–359

    PubMed  Google Scholar 

  75. Kyong J, Chung CK, Kim JS (2015) The entropic brain: effortful speech reflected in organisation of the network graph. J Cogn Sci 16:61–72

    Google Scholar 

  76. Landauer R (1961) Irreversibility and heat generation in the computing process. IBM J Res Dev 5:183–191

    Google Scholar 

  77. Li X, Zhu Z, Zhao W, Sun Y, Wen D, Xie Y et al (2018) Decreased resting-state brain signal complexity in patients with mild cognitive impairment and Alzheimer’s disease: a multiscale entropy analysis. Biomed Opt Express 9:1916–1929

    PubMed  PubMed Central  Google Scholar 

  78. Liu J, LeeHJ WeitzAJ, Fang Z, Lin P, Choy M et al (2015) Frequency selective control of cortical and subcortical networks by central thalamus. Elife 4:e09215. https://doi.org/10.7554/elife.09215

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  79. London ED (2016) Impulsivity, stimulant abuse, and dopamine receptor signaling. Adv Pharmacol 76:67–84

    CAS  PubMed  Google Scholar 

  80. Low I, Kuo PC, Tsai CL, Liu YH, Lin MW, Chao HT et al (2018) Interactions of BDNF Val66Met polymorphism and menstrual pain on brain complexity. Front Neurosci 12:826

    PubMed  PubMed Central  Google Scholar 

  81. Loy BD, Cameron MH, O’Connor PJ (2018) Perceived fatigue and energy are independent unipolar states: supporting evidence. Med Hypotheses 113:46–51

    PubMed  PubMed Central  Google Scholar 

  82. Lupien SJ, Maheu F, Tu M, Fiocco A, Schramek TE (2007) The effects of stress and stress hormones on human cognition. Implications for the field of brain and cognition. Brain Cogn 65(3):209–237

    CAS  PubMed  Google Scholar 

  83. Lustenberger C et al (2015) Functional role of frontal alpha oscillations in creativity. Cortex 67:74–82

    PubMed  PubMed Central  Google Scholar 

  84. Machado L, Cantilino A (2016) A systematic review of the neural correlates of positive emotions. Rev Bras Psiquiatr 39:172–179

    PubMed  Google Scholar 

  85. Manohar SG, Muhammed K, Fallon SJ et al (2018) Motivation dynamically increases noise resistance by internal feedback during movement. Neuropsychologia 123:19–29

    PubMed  Google Scholar 

  86. Margulies DS, Ghosh SS, Goulas A, Falkiewicz M, Huntenburg JM, Langs G et al (2016) Situating the default-mode network along a principal gradient of macroscale cortical organization. PNAS 113(44):12574–12579

    CAS  PubMed  Google Scholar 

  87. Martin K, Meeusen R, Thompson KG et al (2018) Mental fatigue impairs endurance performance: a physiological explanation. Sports Med 48:2041

    PubMed  Google Scholar 

  88. McMorris T, Barwood M, Hale B, Dicks M, Corbett J (2018) Cognitive fatigue effects on physical performance. J Phys Behav 188:103–107

    CAS  Google Scholar 

  89. Meeusen R, Van Cutsem J, Roelands B (2020) Endurance exercise-induced and mental fatigue and the brain. Exp Psychol. https://doi.org/10.1113/EP088186

    Article  Google Scholar 

  90. Meijers J, Harte JM, Meynen G, Cuijpers P, Scherder EJ (2018) Reduced self-control after three months of imprisonment; a pilot study. Front Psychol 9:69

    PubMed  PubMed Central  Google Scholar 

  91. Mildner JN, Tamir DI (2019) Spontaneous thought as an unconstrained memory process. Trends Neurosci 42(11):763–777

    CAS  PubMed  Google Scholar 

  92. Mitchell JM, Weinstein D, Vega T, Kayser AS (2018) Dopamine, time perception, and future time perspective. Psychopharmacology 235(10):2783–2793

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Moran TP, Bernat EM, Aviyente S, Schroder HS, Moser JS (2015) Sending mixed signals: worry is associated with enhanced initial error processing but reduced call for subsequent cognitive control. Soc Cogn Affect Neurosci 10(11):1548–1556

    PubMed  PubMed Central  Google Scholar 

  94. Muhammed K, Manohar S, Ben Yehuda M, Chong TT-J, Tofaris G, Lennox G et al (2016) Reward sensitivity deficits modulated by dopamine are associated with apathy in Parkinson’s disease. Brain 139(10):2706–2721

    PubMed  PubMed Central  Google Scholar 

  95. Muller L, Chavane F, Reynolds J, Sejnowski TJ (2018) Cortical travelling waves: mechanisms and computational principles. Nat Rev Neurosci 19:255–268

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Murrough JW, Abdallah CG, Anticevic A, Collins KA, Geha P, Averill LA, Schwartz J, DeWilde KE et al (2016) Reduced global functional connectivity of the medial prefrontal cortex in major depressive disorder. Hum Brain Mapp 37(9):3214–3223

    PubMed  PubMed Central  Google Scholar 

  97. Musall S, Kaufman MT, Juavinett AL, Gluf S, Churchland AK (2019) Single-trial neural dynamics are dominated by richly varied movements. Nat Neurosci 22:1677–1686

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Neupert SD, Allaire JC (2012) I think I can, I think I can: examining the within-person coupling of control beliefs and cognition in older adults. Psychol Aging 2(2):145–152

    Google Scholar 

  99. Nobis L, Husain M (2018) Apathy in Alzheimer’s disease. Curr Opin Behav Sci 22:7–13

    PubMed  PubMed Central  Google Scholar 

  100. Oei NYL, Rombouts SARB, Soeter RP, van Gerven JM, Both S (2012) Dopamine modulates reward system activity during subconscious processing of sexual stimuli. Neuropsychopharmacology 37:1729–1737

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Omidvarnia A, Mesbah M, Pedersen M, Jackson G (2018) Range entropy: a bridge between signal complexity and self-similarity. arXiv:1809.06500

  102. Padmanabhan A, Lynch CJ, Schaer M, Menon V (2017) The default mode network in autism. Biol Psychiatry Cogn Neurosci Neuroimaging 2:476–486

    PubMed  PubMed Central  Google Scholar 

  103. Pageaux B et al (2014) Response inhibition impairs subsequent self-paced endurance performance. Eur J Appl Physiol 114(5):1095–1105

    PubMed  Google Scholar 

  104. Panksepp J (1998) Affective neuroscience: the foundations of human and animal emotions. Oxford University Press, New York

    Google Scholar 

  105. Pasley BN, Freeman RD (2008) Neurovascular coupling. Scholarpedia 3(3):5340

    Google Scholar 

  106. Patzelt EH, Kool W, Millner AJ, Gershman SJ (2019) The transdiagnostic structure of mental effort avoidance. Sci Rep 9(1):1689

    PubMed  PubMed Central  Google Scholar 

  107. Pepperell R (2018a) Consciousness as a physical process caused by the organization of energy in the brain. Front Psychol 1(9):2091. https://doi.org/10.3389/fpsyg.2018.02091

    Article  Google Scholar 

  108. Pepperell R (2018b) Consciousness as a physical process caused by the organization of energy in the brain. Front Psychol. https://doi.org/10.3389/fpsyg.2018.02091

    Article  PubMed  PubMed Central  Google Scholar 

  109. Perri R, Carlesimo GA, Costa A (2018) The contribution of neuropsychological and neuroimaging research to the definition of the neurocognitive correlates of apathy. Neuropsychologia 118(Pt B):1–3

    PubMed  Google Scholar 

  110. Peters A, McEwen BS, Friston K (2017) Uncertainty and stress: why it causes diseases and how it is mastered by the brain. Prog Neurobiol 156:164–188

    PubMed  Google Scholar 

  111. Piscopo D, Weible A, Rothbart MK, Posner MI, Niell CM (2018) Changes in white matter in mice resulting from low frequency brain stimulation. Proc Natl Acad Sci USA 115(27):6639–6646

    Google Scholar 

  112. Poldrack RA (2015) Is “efficiency” a useful concept in cognitive neuroscience? Dev Cogn Neurosci 11:12–17

    PubMed  Google Scholar 

  113. Pop-Jordanova N, Pop-Jordanov N (2005) Spectrum-weighted EEG frequency (“brain-rate”) as a quantitative indicator of mental arousal. Prilozi 26(2):35–42

    PubMed  Google Scholar 

  114. Remmers C, Zander T (2018a) Why you don’t see the forest for the trees when you are anxious: anxiety impairs intuitive decision making. Clin Psycholog Sci 6:48–62

    Google Scholar 

  115. Remmers C, Zander T (2018b) Why you don’t see the forest for the trees when you are anxious: anxiety impairs intuitive decision making. Clin Psychol Sci 6:48–62

    Google Scholar 

  116. Rocha RP et al (2018) Homeostatic plasticity and emergence of functional networks in a whole-brain model at criticality. Sci Rep 8:1–5

    Google Scholar 

  117. Rowe AD, Fitness J (2018) Understanding the role of negative emotions in adult learning and achievement: a social functional perspective. Behav Sci (Basel) 8(2):27

    Google Scholar 

  118. Rubaltelli E, Agnoli S, Leo I (2018) Emotional intelligence impact on half marathon finish times. Pers Individ Diff 128:107–112

    Google Scholar 

  119. Rudd M, Aaker J, Vohs K (2012) Awe expands people’s perception of time, alters decision making, and enhances well-being. Psychol Sci 23(10):1130–1136

    PubMed  Google Scholar 

  120. Ryan RM, Deci EL (2008) From ego depletion to vitality: theory 242 WEINSTEIN AND RYAN and findings concerning the facilitation of energy available to the self. Soc Pers Psychol Compass 2:702–717

    Google Scholar 

  121. Ryan RM, Deci EL (2017) Self-determination theory: basic psychological needs in motivation development and wellness. Guilford Press, New York

    Google Scholar 

  122. Ryan RM, Deci EL, Vansteenkiste M (2016) Autonomy and autonomy disturbances in self-development and psychopathology: research on motivation, attachment, and clinical process. In: D. Cicchetti (eds) Developmental psychopathology, vol. 1, 3rd edn. Theory and Method, pp 385–438

  123. Saarimäki H et al (2017) Distributed affective space represents multiple emotion categories across the brain. http://dx.doi.org/10.1101/123521

  124. Saarimäki H, Gostopoulos A, Jääskeläinen IP, Lampinen J, Vuilleumier P, Sams M, Nummenmaa L (2015) Discrete neural signatures of basic emotions. Cereb Cortex 1–11

  125. Saarimäki H et al (2016) Discrete neural signatures of basic emotions. Cereb Cortex 26(6):2563–2573

    PubMed  Google Scholar 

  126. Salamone JD, Correa M (2012) The mysterious motivational functions of mesolimbic dopamine. Neuron 76:470–485

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Sapey-Triomphe L-A, Heckemann RA, Boublay N, Dorey J-M, Hénaff M-A, Rouch I et al (2015) Neuroanatomical correlates of recognizing face expressions in mild stages of Alzheimer’s disease. PLoS ONE 10(12):e0143586

    PubMed  PubMed Central  Google Scholar 

  128. Saunders B, Lin H, Milyavskaya M, Inzlicht M (2017) The emotive nature of conflict monitoring in the medial prefrontal cortex. Int J Psychophysiol 119:31–40

    PubMed  Google Scholar 

  129. Saxe G, Calderone D, Morales L (2018) Brain entropy and human intelligence: a resting-state fMRI study. PLoS ONE 13:e0191582

    PubMed  PubMed Central  Google Scholar 

  130. Sayood K (2018) Information theory and cognition: a review. Entropy 20:706

    Google Scholar 

  131. Schrödinger E (1945) What is life? the physical aspect of the living cell. Cambridge University Press, Cambridge

    Google Scholar 

  132. Schwartz JM, Stapp HP, Beauregard M (2005) Quantum physics in neuroscience and psychology: a neurophysical model of mind-brain interaction. Philos Trans. R Soc Lond B Biol Sci 360:1309–1327

    Google Scholar 

  133. Selye H (1974) Stress without distress. New American Library, New York

    Google Scholar 

  134. Seo D et al (2008) Role of serotonin and dopamine system interactions in the neurobiology of impuive aggression and its comorbidity with other clinical disorders. Aggress Violent Behav 13(5):383–395

    PubMed  PubMed Central  Google Scholar 

  135. Simpson EH, Balsam PD (2015) The behavioral neuroscience of motivation: an overview of concepts, measures, and translational applications. Curr Top Behav Neurosci 27:1–12

    Google Scholar 

  136. Sizemore AE, Giusti C, Kahn A et al (2018) Cliques and cavities in the human connectome. J Comput Neurosci 44:115

    PubMed  Google Scholar 

  137. Smith RX, Jann K, Dapretto M, Wang DJJ (2018) Imbalance of functional connectivity and temporal entropy in resting-state networks in autism spectrum disorder: a machine learning approach. Front Neurosci 12:869. https://doi.org/10.3389/fnins.2018.00869

    Article  PubMed  PubMed Central  Google Scholar 

  138. Smitha KA, Akhil Raja K, Arun KM, Rajesh PG, Thomas B, Kapilamoorthy TR, Kesavadas C (2017) Resting state fMRI: a review on methods in resting state connectivity analysis and resting state networks. Neuroradiol J 4:305–317

    Google Scholar 

  139. Soares S, Atallah BV, Paton JJ (2016) Midbrain dopamine neurons control judgment of time. Science 354:1273–1277

    CAS  PubMed  Google Scholar 

  140. Sokunbi MO, Fung W, Sawlani V, Choppin S, Linden DE, Thome J (2013) Resting state fMRI entropy probes complexity of brain activity in adults with ADHD. Psychiatry Res 214:341–348

    PubMed  Google Scholar 

  141. Stanghellini G, Ballerini M, Presenza S, Mancini M, Northoff G, Cutting J (2016) Abnormal time experiences in major depression. An empirical qualitative study. Psychopathology. https://doi.org/10.1159/000452892

    Article  PubMed  Google Scholar 

  142. Stellar JE et al (2015) Positive affect and markers of inflammation: discrete positive emotions predict lower levels of inflammatory cytokines. Emotion 2:129–133

    Google Scholar 

  143. Steptoe A, Wardle J (2005) Positive affect and biological function in everyday life. Neurobiol Aging 26(Suppl. 1):108–112

    PubMed  Google Scholar 

  144. Street S (2016) Neurobiology as information physics. Front Syst Neurosci 10:90

    PubMed  PubMed Central  Google Scholar 

  145. Sur S, Sinha VK (2009) Event-related potential: an overview. Ind Psychiatry J 18(1):70–73

    PubMed  PubMed Central  Google Scholar 

  146. Takeda K, Sumiyoshi T, Matsumoto M, Murayama K, Ikezawa S, Matsumoto K, Nakagome K (2018) Neural correlates for intrinsic motivational deficits of schizophrenia; implications for therapeutics of cognitive impairment. Front Psychiatry 9:178

    PubMed  PubMed Central  Google Scholar 

  147. Tipples J (2018) Increased frustration predicts the experience of time slowing-down: evidence from an experience sampling study. T&TP 6(2):220–230

    Google Scholar 

  148. Tomasi D, Wang GJ, Volkow ND (2013) Energetic cost of brain functional connectivity. PNAS 110:13642–13647

    CAS  PubMed  Google Scholar 

  149. Touroutoglou A, Lindquist KA, Dickerson BC, Barrett LF (2015) Intrinsic connectivity in the human brain does not reveal networks for “basic” emotions. Soc Cogn Affect Neurosci. https://doi.org/10.1093/scan/nsv013

    Article  PubMed  PubMed Central  Google Scholar 

  150. Touroutoglou A, Andreano JM, Adebayo M, Barrett LF (2019) Motivation in the service of allostasis: the role of the anterior cingulate cortex. Adv Motiv Sci 6:1–25

    PubMed  Google Scholar 

  151. Tozzi A, Peters JF (2017) From abstract topology to real thermodynamic brain activity. Cogn neurodyn 11(3):283–292. https://doi.org/10.1007/s11571-017-9431-7

    Article  PubMed  PubMed Central  Google Scholar 

  152. Tozzi A, Peters JF, Fingelkurts AA, Fingelkurts AA, Marijuán PC (2017) Topodynamics of metastable brains. Phys Life Rev. https://doi.org/10.1016/j.plrev.2017.03.001

    Article  PubMed  Google Scholar 

  153. Treadway MT, Buckholtz JW, Cowan RL, Woodward ND, Li R, Ansari MS et al (2012) Dopaminergic mechanisms of individual differences in human effort-based decision-making. J Neurosci 32(18):6170–6176

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Trevisiol A et al (2017) Monitoring ATP dynamics in electrically active white matter tracts. eLife 6:e24241

    PubMed  PubMed Central  Google Scholar 

  155. Uhrig L, Sitt JD, Jacob A et al (2018) Resting-state dynamics as a cortical signature of anesthesia in monkeys. Anesthesiology 129(5):942–958

    PubMed  Google Scholar 

  156. Van Cutsem J, Marcora S, De Pauw K et al (2017) The effects of mental fatigue on physical performance: a systematic review. Sports Med 47(8):1569–1588

    PubMed  Google Scholar 

  157. van den Heuvel MP, Sporns O (2011) Rich-club organization of the human connectome. J Neurosci 31:15775–15786

    PubMed  PubMed Central  Google Scholar 

  158. van den Heuvel MP, Kahn RS, Goni J, Sporns O (2012) High-cost, high-capacity backbone for global brain communication. Proc Natl Acad Sci USA 109:11372–11377

    PubMed  Google Scholar 

  159. Veltkamp M, Aarts H, Custers R (2009) Unravelling the motivational yarn: a framework for understanding the instigation of implicitly motivated behaviour resulting from deprivation and positive affect. Eur Rev Soc Psychol 20:345–381

    Google Scholar 

  160. Verma R, Balhara YP, Gupta CS (2011) Gender differences in stress response: role of developmental and biological determinants. Ind Psychiatry J 20(1):4–10

    PubMed  PubMed Central  Google Scholar 

  161. Wang B, Niu Y, Miao L, Cao R, Yan P, Guo H et al (2017) Decreased complexity in Alzheimer’s disease: resting-state fMRI evidence of brain entropy mapping. Front Aging Neurosci 9:378

    PubMed  PubMed Central  Google Scholar 

  162. Wang DJ, Jann K, Fan C, Qiao Y, Zang Y-F, Lu H et al (2018) Neurophysiological basis of multiscale entropy of brain complexity and its relationship with functional connectivity. Front Neurosci 12:352

    PubMed  PubMed Central  Google Scholar 

  163. Warm JS, Parasuraman R, Matthews G (2008) Vigilance requires hard mental work and is stressful. Hum Factors 50(3):433–441

    PubMed  Google Scholar 

  164. Wise T, Marwood L, Perkins AM, Herane-Vives A, Joules R, Lythgoe DJ et al (2017) Instability of default mode network connectivity in major depression: a two-sample confirmation study. Transl Psychiatry 7(4):e1105

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Wissner-Gross AD, Freer CE (2013) Causal entropic forces. Phys Rev Lett 110:168702

    CAS  PubMed  Google Scholar 

  166. Wu J, Zhang J, Liu C, Liu D, Ding X, Zhou C (2012) Graph theoretical analysis of EEG functional connectivity during music perception. Brain Res 1483:71–81

    CAS  PubMed  Google Scholar 

  167. Yamada Y, Kawabe T (2011) Emotion colors time perception unconsciously. Conscious Cogn 20(4):1–7

    Google Scholar 

  168. Yang X, Li L, Yang Q, Wang Y, Wang X, Zou Q et al (2018) Spatial complexity of brain signal is altered in patients with generalized anxiety disorder. J Affect Disord 246:387–393

    PubMed  Google Scholar 

  169. Yang S, Zhao Z, Cui H et al (2019) Temporal variability of cortical gyral-sulcal resting state functional activity correlates with fluid intelligence. Front Neural Circuits 13(36):1–12

    Google Scholar 

  170. Zohar D, Tzischinski O, Epstein R (2003) Effects of energy availability on immediate and delayed emotional reactions to work events. J Appl Psychol 88:1082–1093

    PubMed  Google Scholar 

Download references

Acknowledgement

Supported by National Brain Research Program of Hungary (NAP2, 2017-1.2.1-NKP-2017-00002) to ZK.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Eva Déli.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Déli, E., Kisvárday, Z. The thermodynamic brain and the evolution of intellect: the role of mental energy. Cogn Neurodyn 14, 743–756 (2020). https://doi.org/10.1007/s11571-020-09637-y

Download citation

Keywords

  • Mental energy
  • Carnot engine
  • Consciousness
  • Depression
  • Emotions
  • Mental disease