Skip to main content
Log in

Machine classification of spatiotemporal patterns: automated parameter search in a rebounding spiking network

  • Research Article
  • Published:
Cognitive Neurodynamics Aims and scope Submit manuscript

Abstract

Various patterns of electrical activities, including travelling waves, have been observed in cortical experimental data from animal models as well as humans. By applying machine learning techniques, we investigate the spatiotemporal patterns, found in a spiking neuronal network with inhibition-induced firing (rebounding). Our cortical sheet model produces a wide variety of network activities including synchrony, target waves, and travelling wavelets. Pattern formation is controlled by modifying a Gaussian derivative coupling kernel through varying the level of inhibition, coupling strength, and kernel geometry. We have designed a computationally efficient machine classifier, based on statistical, textural, and temporal features, to identify the parameter regimes associated with different spatiotemporal patterns. Our results reveal that switching between synchrony and travelling waves can occur transiently and spontaneously without a stimulus, in a noise-dependent fashion, or in the presence of stimulus when the coupling strength and level of inhibition are at moderate values. They also demonstrate that when a target wave is formed, its wave speed is most sensitive to perturbations in the coupling strength between model neurons. This study provides an automated method to characterize activities produced by a novel spiking network that phenomenologically models large scale dynamics in the cortex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Adhikari MH, Quilichini PP, Roy D, Jirsa V, Bernard C (2012) Brain state dependent postinhibitory rebound in entorhinal cortex interneurons. J Neurosci 32(19):6501–6510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Afrashteh N, Inayat S, Mohsenvand M, Mohajerani MH (2017) Optical-flow analysis toolbox for characterization of spatiotemporal dynamics in mesoscale optical imaging of brain activity. NeuroImage 153:58–74

    Article  PubMed  Google Scholar 

  • Andrew AM (2000) An introduction to support vector machines and other kernel-based learning methods by nello christianini and john Shawe–Taylor. Robotica 18(6):687–689

    Google Scholar 

  • Bar Y, Diamant I, Wolf L, Lieberman S, Konen E, Greenspan H (2015) Chest pathology detection using deep learning with non-medical training. In: 2015 IEEE 12th international symposium on biomedical imaging (ISBI), pp 294–297. IEEE

  • Benucci A, Frazor RA, Carandini M (2007) Standing waves and traveling waves distinguish two circuits in visual cortex. Neuron 55(1):103–117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Breiman L (2001) Random forests. Mach Learn 45(1):5–32

    Article  Google Scholar 

  • Chen Y, Geisler WS, Seidemann E (2006) Optimal decoding of correlated neural population responses in the primate visual cortex. Nat Neurosci 9(11):1412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coombes S, Doole S (1996) Neuronal populations with reciprocal inhibition and rebound currents: effects of synaptic and threshold noise. Phys Rev E 54(4):4054

    Article  CAS  Google Scholar 

  • Destexhe A, Bal T, McCormick DA, Sejnowski TJ (1996) Ionic mechanisms underlying synchronized oscillations and propagating waves in a model of ferret thalamic slices. J Neurophys 76(3):2049–2070

    Article  CAS  Google Scholar 

  • Ermentrout B (1998) Neural networks as spatio-temporal pattern-forming systems. Rep Progr Phys 61(4):353

    Article  Google Scholar 

  • Ermentrout GB, Kleinfeld D (2001) Traveling electrical waves in cortex: insights from phase dynamics and speculation on a computational role. Neuron 29(1):33–44

    Article  CAS  PubMed  Google Scholar 

  • Ermentrout GB, Terman DH (2010) Mathematical foundations of neuroscience, vol 35. Springer, Berlin

    Book  Google Scholar 

  • Eytan D, Marom S (2006) Dynamics and effective topology underlying synchronization in networks of cortical neurons. J Neurosci 26(33):8465–8476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fakoor R, Ladhak F, Nazi A, Huber M (2013) Using deep learning to enhance cancer diagnosis and classification. In: Proceedings of the international conference on machine learning, vol 28. ACM New York, USA

  • Ghai C (2012) A textbook of practical physiology. JP Medical Ltd

  • Girard P, Hupé J, Bullier J (2001) Feedforward and feedback connections between areas v1 and v2 of the monkey have similar rapid conduction velocities. J Neurophys 85(3):1328–1331

    Article  CAS  Google Scholar 

  • Golomb D, Wang X-J, Rinzel J (1996) Propagation of spindle waves in a thalamic slice model. J Neurophys 75(2):750–769

    Article  CAS  Google Scholar 

  • Hahn SL (1996) Hilbert transforms in signal processing, vol 2. Artech House, Boston

    Google Scholar 

  • Han F, Caporale N, Dan Y (2008) Reverberation of recent visual experience in spontaneous cortical waves. Neuron 60(2):321–327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haralick RM, Shanmugam K, Dinstein I et al (1973) Textural features for image classification. IEEE Trans Syst Man Cybern 3(6):610–621

    Article  Google Scholar 

  • Heitmann S, Boonstra T, Gong P, Breakspear M, Ermentrout B (2015) The rhythms of steady posture: motor commands as spatially organized oscillation patterns. Neurocomputing 170:3–14

    Article  Google Scholar 

  • Heitmann S, Gong P, Breakspear M (2012) A computational role for bistability and traveling waves in motor cortex. Front Comput Neurosci 6:67

    Article  PubMed  PubMed Central  Google Scholar 

  • Hodgkin AL, Huxley AF (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol 117(4):500–544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hopkins M, Furber S (2015) Accuracy and efficiency in fixed-point neural ODE solvers. Neural Comput 27(10):2148–2182

    Article  PubMed  Google Scholar 

  • Horn BK, Schunck BG (1981) Determining optical flow. Artif intell 17(1–3):185–203

    Article  Google Scholar 

  • Huang X, Troy WC, Yang Q, Ma H, Laing CR, Schiff SJ, Wu J-Y (2004) Spiral waves in disinhibited mammalian neocortex. J Neurosci 24(44):9897–9902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Izhikevich EM (2001) Resonate-and-fire neurons. Neural Netw 14(6–7):883–894

    Article  CAS  PubMed  Google Scholar 

  • Izhikevich EM (2003) Simple model of spiking neurons. IEEE Trans Neural Netw 14(6):1569–1572

    Article  CAS  PubMed  Google Scholar 

  • Izhikevich EM (2004) Which model to use for cortical spiking neurons? IEEE Trans Neural Netw 15(5):1063–1070

    Article  PubMed  Google Scholar 

  • Jacobs J, Kahana MJ, Ekstrom AD, Fried I (2007) Brain oscillations control timing of single-neuron activity in humans. J Neurosci 27(14):3839–3844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jancke D, Chavane F, Naaman S, Grinvald A (2004) Imaging cortical correlates of illusion in early visual cortex. Nature 428(6981):423

    Article  CAS  PubMed  Google Scholar 

  • Jansen BH, Brandt ME (1991) The effect of the phase of prestimulus alpha activity on the averaged visual evoked response. Electroencephalogr Clin Neurophysiol/Evoked Potentials Sect 80(4):241–250

    Article  CAS  Google Scholar 

  • Johannesen L, Grove USL, Sørensen JS, Schmidt ML, Couderc J, Graff C (2010) A wavelet-based algorithm for delineation and classification of wave patterns in continuous holter ECG recordings. In: 2010 Computing in cardiology, pp 979–982. IEEE

  • Korchiyne R, Farssi SM, Sbihi A, Touahni R, Alaoui MT (2014) A combined method of fractal and GLCM features for MRI and Ct scan images classification. arXiv preprint arXiv:1409.4559

  • Lu Y, Sato Y, Amari S-I (2011) Traveling bumps and their collisions in a two-dimensional neural field. Neural Comput 23(5):1248–1260

    Article  PubMed  Google Scholar 

  • Maeda J, Novianto S, Miyashita A, Saga S, Suzuki Y (1998) Fuzzy region-growing segmentation of natural images using local fractal dimension. In: Proceedings. Fourteenth international conference on pattern recognition (Cat. No. 98EX170), vol 2, pp 991–993. IEEE

  • Mohajerani MH, Chan AW, Mohsenvand M, LeDue J, Liu R, McVea DA, Boyd JD, Wang YT, Reimers M, Murphy TH (2013) Spontaneous cortical activity alternates between motifs defined by regional axonal projections. Nature Neurosci 16(10):1426

    Article  CAS  PubMed  Google Scholar 

  • Muller L, Chavane F, Reynolds J, Sejnowski TJ (2018) Cortical travelling waves: mechanisms and computational principles. Nat Rev Neurosci 19:255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muller L, Reynaud A, Chavane F, Destexhe A (2014) The stimulus-evoked population response in visual cortex of awake monkey is a propagating wave. Nat Commun 5:3675

    Article  PubMed  Google Scholar 

  • Oprea L, Pack CC, Khadra A (2019) Spatiotemporal patterns in a rebounding spiking network: a machine classification approach. www.medicine.mcgill.ca/physio/khadralab/code_cogneurody1.html

  • Orlandi JG, Soriano J, Alvarez-Lacalle E, Teller S, Casademunt J (2013) Noise focusing and the emergence of coherent activity in neuronal cultures. Nat Phys 9(9):582

    Article  CAS  Google Scholar 

  • Patel J, Schomburg EW, Berényi A, Fujisawa S, Buzsáki G (2013) Local generation and propagation of ripples along the septotemporal axis of the hippocampus. J Neurosci 33(43):17029–17041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pinto DJ, Ermentrout GB (2001) Spatially structured activity in synaptically coupled neuronal networks: I. Traveling fronts and pulses. SIAM J Appl Math 62(1):206–225

    Article  Google Scholar 

  • Prechtl J, Cohen L, Pesaran B, Mitra P, Kleinfeld D (1997) Visual stimuli induce waves of electrical activity in turtle cortex. Proc Natl Acad Sci 94(14):7621–7626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reimer A, Hubka P, Engel AK, Kral A (2010) Fast propagating waves within the rodent auditory cortex. Cereb Cortex 21(1):166–177

    Article  PubMed  Google Scholar 

  • Rinzel J, Terman D, Wang X-J, Ermentrout B (1998) Propagating activity patterns in large-scale inhibitory neuronal networks. Science 279(5355):1351–1355

    Article  CAS  PubMed  Google Scholar 

  • Roland PE, Hanazawa A, Undeman C, Eriksson D, Tompa T, Nakamura H, Valentiniene S, Ahmed B (2006) Cortical feedback depolarization waves: a mechanism of top-down influence on early visual areas. Proc Natl Acad Sci 103(33):12586–12591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rubino D, Robbins KA, Hatsopoulos NG (2006) Propagating waves mediate information transfer in the motor cortex. Nat Neurosci 9(12):1549

    Article  CAS  PubMed  Google Scholar 

  • Sato TK, Nauhaus I, Carandini M (2012) Traveling waves in visual cortex. Neuron 75(2):218–229

    Article  CAS  PubMed  Google Scholar 

  • Schirrmeister R, Gemein L, Eggensperger K, Hutter F, Ball T (2017) Deep learning with convolutional neural networks for decoding and visualization of eeg pathology. In: 2017 IEEE signal processing in medicine and biology symposium (SPMB), pp 1–7. IEEE

  • Smith GD, Cox CL, Sherman SM, Rinzel J (2000) Fourier analysis of sinusoidally driven thalamocortical relay neurons and a minimal integrate-and-fire-or-burst model. J Neurophys 83(1):588–610

    Article  CAS  Google Scholar 

  • Song W-J, Kawaguchi H, Totoki S, Inoue Y, Katura T, Maeda S, Inagaki S, Shirasawa H, Nishimura M (2005) Cortical intrinsic circuits can support activity propagation through an isofrequency strip of the guinea pig primary auditory cortex. Cereb Cortex 16(5):718–729

    Article  PubMed  Google Scholar 

  • Takahashi K, Saleh M, Penn RD, Hatsopoulos N (2011) Propagating waves in human motor cortex. Front Hum Neurosci 5:40

    Article  PubMed  PubMed Central  Google Scholar 

  • Torrence C, Compo GP (1998) A practical guide to wavelet analysis. Bull Am Meteorol Soc 79(1):61–78

    Article  Google Scholar 

  • Townsend RG, Gong P (2018) Detection and analysis of spatiotemporal patterns in brain activity. PLoS Comput Biol 14(12):e1006643

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Townsend RG, Solomon SS, Chen SC, Pietersen AN, Martin PR, Solomon SG, Gong P (2015) Emergence of complex wave patterns in primate cerebral cortex. J Neurosci 35(11):4657–4662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu J-Y, Huang X, Zhang C (2008) Propagating waves of activity in the neocortex: what they are, what they do. Neuroscientist 14(5):487–502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu W, Huang X, Takagaki K, Wu J-Y (2007) Compression and reflection of visually evoked cortical waves. Neuron 55(1):119–129

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zanos TP, Mineault PJ, Guitton D, Pack CC (2016) Mechanisms of saccadic suppression in primate cortical area v4. J Neurosci 36(35):9227–9239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zanos TP, Mineault PJ, Nasiotis KT, Guitton D, Pack CC (2015) A sensorimotor role for traveling waves in primate visual cortex. Neuron 85(3):615–627

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by a Natural Sciences and Engineering Council of Canada discovery grant to A.K, and by Chercheur-boursier de merite grant to C.P.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anmar Khadra.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oprea, L., Pack, C.C. & Khadra, A. Machine classification of spatiotemporal patterns: automated parameter search in a rebounding spiking network. Cogn Neurodyn 14, 267–280 (2020). https://doi.org/10.1007/s11571-020-09568-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11571-020-09568-8

Keywords

Navigation