Skip to main content
Log in

Plasma total antioxidant status and cognitive impairments in first-episode drug-naïve patients with schizophrenia

  • Research Article
  • Published:
Cognitive Neurodynamics Aims and scope Submit manuscript

Abstract

Accumulating evidence suggest that excessive reactive oxygen species-induced oxidative damage may underlie neurodegeneration and cognitive impairment in several disorders including schizophrenia. In this study we examined the association of oxidative stress with cognitive deficits in first-episode drug-naïve (FEDN) patients with schizophrenia. We recruited 54 FEDN patients and 50 age- and sex-matched healthy controls and examined the Measurement and Treatment Research to Improve Cognition in Schizophrenia Consensus cognitive Battery (MCCB) and plasma total antioxidant status (TAS). Psychopathological symptoms were assessed using the Positive and Negative Syndrome Scale. The results showed that plasma TAS levels were significantly lower in the patients than those in the healthy subjects (94.7 ± 25.0 U/ml vs 156.6 ± 46.7 U/ml, p < 0.0001). The patients scored lower than healthy controls on the MCCB total score, speed of processing, attention/vigilance and managing emotion test index and STROOP test. For the patients, TAS was associated with some domains of cognitive deficits in schizophrenia, such as speed of processing, attention/vigilance and emotion managing. Our results suggested that oxidative stress may be involved in the pathophysiology of schizophrenia at the early of stage and its cognitive impairment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

ANOVA:

Analysis of variance

ATD:

Acute tryptophan depletion

BVMT:

Brief Visuospatial Memory Test

FEDN:

First-episode drug-naïve

FEP:

First-episode patients

FRAP:

Ferric reducing antioxidant potential

HVLT:

Hopkins Verbal Learning Test

LTP:

Long time potentiation

MCCB:

Measurement and Treatment Research to Improve Cognition in Schizophrenia Consensus cognitive Battery and plasma

MSCEIT:

Mayer–Salovey–Caruso Emotional Intelligence Test

NAB:

Neuropsychological assessment battery

OS:

Oxidative stress

PANSS:

Psychopathological symptoms were assessed using the Positive and Negative Syndrome Scale

ROS:

Reactive oxygen species

SCID:

Structured clinical interview for DSM-IV

TAS:

Total antioxidant status

TPTZ:

Tripyridyl triazine

References

  • Akiibinu MO, Ogundahunsi OA, Ogunyemi EO (2012) Inter-relationship of plasma markers of oxidative stress and thyroid hormones in schizophrenics. BMC Res Notes 5:169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alvarez JA, Emory E (2006) Executive function and the frontal lobes: a meta-analytic review. Neuropsychol Rev 16(1):17–42

    Article  PubMed  Google Scholar 

  • An H, Du X, Huang X et al (2018) Obesity, altered oxidative stress, and clinical correlates in chronic schizophrenia patients. Transl Psychiatry 8(1):258

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Barch DM, Carter CS, Arnsten A et al (2009) Selecting paradigms from cognitive neuroscience for translation into use in clinical trials: proceedings of the third CNTRICS meeting. Schizophr Bull 35(1):109–114

    Article  PubMed  Google Scholar 

  • Barder HE, Sundet K, Rund BR et al (2013) Neurocognitive development in first episode psychosis 5 years follow-up: associations between illness severity and cognitive course. Schizophr Res 149(1–3):63–69

    Article  PubMed  Google Scholar 

  • Benzie IFF, Strain JJ (1996) The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Anal Biochem 239(1):70–76

    Article  CAS  PubMed  Google Scholar 

  • Bitanihirwe BK, Woo TU (2011) Oxidative stress in schizophrenia: an integrated approach. Neurosci Biobehav Rev 35(3):878–893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boskovic M, Vovk T, Plesnicar BK, Grabnar I (2011) Oxidative Stress in Schizophrenia. Curr Neuropharmacol 9(2):301–312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dalby RB, Frandsen J, Chakravarty MM et al (2012) Correlations between Stroop task performance and white matter lesion measures in late-onset major depression. Psychiatry Res 202(2):142–149

    Article  PubMed  Google Scholar 

  • Davies KJ (2000) An overview of oxidative stress. IUBMB Life 50(4–5):241–244

    Article  CAS  PubMed  Google Scholar 

  • Erlenmeyer-Kimling L (2000) Neurobehavioral deficits in offspring of schizophrenic parents: liability indicators and predictors of illness. Am J Med Genet 97(1):65–71

    Article  CAS  PubMed  Google Scholar 

  • Flatow J, Buckley P, Miller BJ (2013) Meta-analysis of oxidative stress in schizophrenia. Biol Psychiat 74(6):400–409

    Article  CAS  PubMed  Google Scholar 

  • Gahtan E, Auerbach JM, Groner Y et al (1998) Reversible impairment of long-term potentiation in transgenic Cu/Zn–SOD mice. Eur J Neurosci 10(2):538–544

    Article  CAS  PubMed  Google Scholar 

  • George A, Ng CP, O’Callaghan M et al (2014) In vitro and ex vivo cellular antioxidant protection and cognitive enhancing effects of an extract of Polygonum minus Huds (Lineminus) demonstrated in a Barnes Maze animal model for memory and learning. BMC Complement Altern Med 14:161

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Green MF, Nuechterlein KH (2004) The MATRICS initiative: developing a consensus cognitive battery for clinical trials. Schizophr Res 72(1):1–3

    Article  PubMed  Google Scholar 

  • Green MF, Horan WP, Lee J (2015) Social cognition in schizophrenia. Nat Rev Neurosci 16(10):620–631

    Article  CAS  PubMed  Google Scholar 

  • Gunes M, Camkurt MA, Bulut M et al (2016) Evaluation of paraoxonase, arylesterase and malondialdehyde levels in schizophrenia patients taking typical, atypical and combined antipsychotic treatment. Clin Psychopharmacol Neurosci 14(4):345–350

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Halliwell B (2006) Oxidative stress and neurodegeneration: where are we now? J Neurochem 97(6):1634–1658

    Article  CAS  PubMed  Google Scholar 

  • Harvey PD (2014) What is the evidence for changes in cognition and functioning over the lifespan in patients with schizophrenia? J Clin Psychiatry 75(Suppl 2):34–38

    Article  PubMed  Google Scholar 

  • Hu HL, Wang T, Zhang ZX et al (2006) The effect of mitochondrial membrane potential on changes of reactive oxygen species and on proliferation of hypoxic human pulmonary arterial smooth muscle cells. Zhonghua jie he he hu xi za zhi = Chin J Tuberc Respir Dis 29(11):727–730

    Google Scholar 

  • Irani F, Kalkstein S, Moberg EA et al (2011) Neuropsychological performance in older patients with schizophrenia: a meta-analysis of cross-sectional and longitudinal studies. Schizophr Bull 37(6):1318–1326

    Article  PubMed  Google Scholar 

  • Keefe RS, Harvey PD, Goldberg TE et al (2008) Norms and standardization of the Brief Assessment of Cognition in Schizophrenia (BACS). Schizophr Res 102(1–3):108–115

    Article  PubMed  Google Scholar 

  • Keefe RS, Fox KH, Harvey PD et al (2011) Characteristics of the MATRICS consensus cognitive battery in a 29-site antipsychotic schizophrenia clinical trial. Schizophr Res 125(2–3):161–168

    Article  PubMed  Google Scholar 

  • Kern RS, Gold JM, Dickinson D et al (2011) The MCCB impairment profile for schizophrenia outpatients: results from the MATRICS psychometric and standardization study. Schizophr Res 126(1–3):124–131

    Article  PubMed  Google Scholar 

  • Kim JH, Lee J, Kim YB et al (2014) Association between subjective well-being and depressive symptoms in treatment-resistant schizophrenia before and after treatment with clozapine. Compr Psychiatry 55(3):708–713

    Article  PubMed  Google Scholar 

  • Kohen R, Nyska A (2002) Oxidation of biological systems: oxidative stress phenomena, antioxidants, redox reactions, and methods for their quantification. Toxicol Pathol 30(6):620–650

    Article  CAS  PubMed  Google Scholar 

  • Kolosova NG, Shcheglova TV, Sergeeva SV et al (2006) Long-term antioxidant supplementation attenuates oxidative stress markers and cognitive deficits in senescent-accelerated OXYS rats. Neurobiol Aging 27(9):1289–1297

    Article  CAS  PubMed  Google Scholar 

  • Li HC (2006) Imbalanced free radicals and antioxidant defense systems in schizophrenia: a comparative study. J Zhejiang Univ Sci B 7(12):981–986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li XF, Zheng YL, Xiu MH et al (2011) Reduced plasma total antioxidant status in first-episode drug-naive patients with schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 35(4):1064–1067

    Article  CAS  PubMed  Google Scholar 

  • Lohr JB, Kuczenski R, Niculescu AB (2003) Oxidative mechanisms and tardive dyskinesia. CNS Drugs 17(1):47–62

    Article  CAS  PubMed  Google Scholar 

  • Mace J, Porter R, O’Brien J et al (2008) Cognitive effects of acute tryptophan depletion in the healthy elderly. Acta Neuropsychiatrica 20(2):78–86

    Article  PubMed  Google Scholar 

  • Martinez-Cengotitabengoa M, Mac-Dowell KS, Leza JC et al (2012) Cognitive impairment is related to oxidative stress and chemokine levels in first psychotic episodes. Schizophr Res 137(1–3):66–72

    Article  PubMed  Google Scholar 

  • Massaad CA, Klann E (2011) Reactive oxygen species in the regulation of synaptic plasticity and memory. Antioxid Redox Signal 14(10):2013–2054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McCleery A, Ventura J, Kern RS et al (2014) Cognitive functioning in first-episode schizophrenia: MATRICS consensus cognitive battery (MCCB) profile of impairment. Schizophr Res 157(1–3):33–39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mendoza-Nuñez VCM, Retana-Ugalde R, Sánchez-RodríGuez MA et al (1999) DNA damage in lymphocytes of elderly patients in relation with total antioxidant levels. Mech Ageing Dev 108(1):9–23

    Article  PubMed  Google Scholar 

  • Mendoza-Núñez VCM, Retana-Ugalde R, Vargas-Guadarrama LA et al (2001) Total antioxidant levels, gender, and age as risk factors for DNA damage in lymphocytes of the elderly. Mech Ageing Dev 122(8):835–847

    Article  PubMed  Google Scholar 

  • Miljevic CD, Nikolic-Kokic A, Blagojevic D et al (2018) Association between neurological soft signs and antioxidant enzyme activity in schizophrenic patients. Psychiatry Res 269:746–752

    Article  CAS  PubMed  Google Scholar 

  • Miller NJ, Rice-Evans C, Davies MJ et al (1993) A novel method for measuring antioxidant capacity and its application to monitoring the antioxidant status in premature neonates. Clin Sci 84(4):407–412

    Article  CAS  PubMed  Google Scholar 

  • Mintz J, Kopelowicz A (2007) CUtLASS confirms CATIE. Arch Gen Psychiatry 64(8):978

    Article  PubMed  Google Scholar 

  • Nicolle MM, Gonzalez J, Sugaya K et al (2001) Signatures of hippocampal oxidative stress in aged spatial learning-impaired rodents. Neuroscience 107(3):415–431

    Article  CAS  PubMed  Google Scholar 

  • Nieuwenstein MR, Aleman A, Haan EHFD (2001) Relationship between symptom dimensions and neurocognitive functioning in schizophrenia: a meta-analysis of WCST and CPT studies. J Psychiatr Res 35(2):119–125

    Article  CAS  PubMed  Google Scholar 

  • Ozcan ME, Gulec ME, Polat R et al (2004) Antioxidant enzyme activities and oxidative stress in affective disorders. Int Clin Psychopharmacol 19(2):89–95

    Article  PubMed  Google Scholar 

  • Padurariu M, Ciobica A, Dobrin I et al (2010) Evaluation of antioxidant enzymes activities and lipid peroxidation in schizophrenic patients treated with typical and atypical antipsychotics. Neurosci Lett 479(3):317–320

    Article  CAS  PubMed  Google Scholar 

  • Palmer BW, Dawes SE, Heaton RK (2009) What do we know about neuropsychological aspects of schizophrenia? Neuropsychol Rev 19(3):365–384

    Article  PubMed  PubMed Central  Google Scholar 

  • Poo MM (2001) Neurotrophins as synaptic modulators. Nat Rev Neurosci 2(1):24–32

    Article  CAS  PubMed  Google Scholar 

  • Radak Z, Kumagai S, Taylor AW et al (2007) Effects of exercise on brain function: role of free radicals. Appl Physiol Nutr Metab 32(5):942–946

    Article  CAS  PubMed  Google Scholar 

  • Raffa M, Atig F, Mhalla A et al (2011) Decreased glutathione levels and impaired antioxidant enzyme activities in drug-naive first-episode schizophrenic patients. BMC Psychiatry 11:124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rajji TK, Mulsant BH (2008) Nature and course of cognitive function in late-life schizophrenia: a systematic review. Schizophr Res 102(1–3):122–140

    Article  PubMed  Google Scholar 

  • Rajji TK, Voineskos AN, Butters MA et al (2013) Cognitive performance of individuals with schizophrenia across seven decades: a study using the MATRICS consensus cognitive battery. Am J Geriatr Psychiatry 21(2):108–118

    Article  PubMed  PubMed Central  Google Scholar 

  • Rajji TK, Miranda D, Mulsant BH (2014) Cognition, function, and disability in patients with schizophrenia: a review of longitudinal studies. Can J Psychiatry 59(1):13–17

    Article  PubMed  PubMed Central  Google Scholar 

  • Ramos-Chavez LA, Roldan-Roldan G (2018) Low serum tryptophan levels as an indicator of global cognitive performance in nondemented women over 50 years of age. Oxid Med Cell Longev 2018:8604718

    CAS  PubMed  PubMed Central  Google Scholar 

  • Reddy R (2003) Reduced plasma antioxidants in first-episode patients with schizophrenia. Schizophr Res 62(3):205–212

    Article  PubMed  Google Scholar 

  • Ruiz-Litago F, Seco J, Echevarria E et al (2012) Adaptive response in the antioxidant defence system in the course and outcome in first-episode schizophrenia patients: a 12-months follow-up study. Psychiatry Res 200(2–3):218–222

    Article  CAS  PubMed  Google Scholar 

  • Stuss DT, Floden D, Alexander MP et al (2001) Stroop performance in focal lesion patients: dissociation of processes and frontal lobe lesion location. Neuropsychologia 39(8):771–786

    Article  CAS  PubMed  Google Scholar 

  • Tan SP, Jie-Feng C, Fan FM et al (2014) Smoking, MATRICS consensus cognitive battery and P50 sensory gating in a Han Chinese population. Drug Alcohol Depend 143:51–57

    Article  PubMed  Google Scholar 

  • Valko M, Leibfritz D, Moncol J et al (2007) Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 39(1):44–84

    Article  CAS  PubMed  Google Scholar 

  • Virit O, Altindag A, Yumru M et al (2009) A defect in the antioxidant defense system in schizophrenia. Neuropsychobiology 60(2):87–93

    Article  PubMed  Google Scholar 

  • Wang N, Wei J, Liu Y et al (2016) Discovery of biomarkers for oxidative stress based on cellular metabolomics. Biomarkers 21(5):449–457

    Article  CAS  PubMed  Google Scholar 

  • Wu Z, Zhang XY, Wang H et al (2012) Elevated plasma superoxide dismutase in first-episode and drug naive patients with schizophrenia: inverse association with positive symptoms. Prog Neuropsychopharmacol Biol Psychiatry 36(1):34–38

    Article  CAS  PubMed  Google Scholar 

  • Wu JQ, da Chen C, Tan YL et al (2014) Cognition impairment in schizophrenia patients with tardive dyskinesia: association with plasma superoxide dismutase activity. Schizophr Res 152(1):210–216

    Article  PubMed  Google Scholar 

  • Yao JK, Keshavan MS (2011) Antioxidants, redox signaling, and pathophysiology in schizophrenia: an integrative view. Antioxid Redox Signal 15(1):2011–2035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yao JK, Reddy R (2011) Oxidative stress in schizophrenia: pathogenetic and therapeutic implications. Antioxid Redox Signal 15(7):1999–2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yao JK, Reddy R, Van Kammen DP (1998) Reduced level of plasma antioxidant uric acid in schizophrenia. Psychiatry Res 80(1):29–39

    Article  CAS  PubMed  Google Scholar 

  • Zhang XY, Chen DC, Xiu MH et al (2012a) Plasma total antioxidant status and cognitive impairments in schizophrenia. Schizophr Res 139(1–3):66–72

    Article  PubMed  Google Scholar 

  • Zhang XY, Liu L, Liu S et al (2012b) Short-term tropisetron treatment and cognitive and P50 auditory gating deficits in schizophrenia. Am J Psychiatry 169(9):974–981

    Article  PubMed  Google Scholar 

  • Zhang XY, Chen DC, Xiu MH et al (2013a) Clinical symptoms and cognitive impairment associated with male schizophrenia relate to plasma manganese superoxide dismutase activity: a case-control study. J Psychiatr Res 47(8):1049–1053

    Article  PubMed  Google Scholar 

  • Zhang XY, Chen DC, Xiu MH et al (2013b) Thioredoxin, a novel oxidative stress marker and cognitive performance in chronic and medicated schizophrenia versus healthy controls. Schizophr Res 143(2–3):301–306

    Article  PubMed  Google Scholar 

  • Zhang Y, Chen X, Yang L et al (2015) Effects of rosmarinic acid on liver and kidney antioxidant enzymes, lipid peroxidation and tissue ultrastructure in aging mice. Food Funct 6(3):927–931

    Article  CAS  PubMed  Google Scholar 

  • Zou YZ, Cui JF, Wang J et al (2009) Clinical reliability and validity of the chinese version of measurement and treatment research to improve cognitive in schizophrenia consensus cognitive battery. Chin J Psychiatry 42(1):29–33

    Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (81761128021), and by Beijing Municipal Natural Science Foundation (7151005).

Author information

Authors and Affiliations

Authors

Contributions

TX collect the subjects and clinical rating, wrote the protocol, conducted the analysis and wrote the article. QL conducted the Measurement and Treatment Research to Improve Cognition in Schizophrenia (MATRICS) Consensus cognitive Battery (MCCB) and plasma total antioxidant status (TAS) data analysis. XL, LT and ZW gave the critical comment for the study design. ST, SC and GY reference search and gave the idea for study design. HA, FY, XZ, YT gave the idea for study design.

Corresponding author

Correspondence to Yunlong Tan.

Ethics declarations

Conflict of interests

The authors declare that they have no competing interests and consent for publication is available.

Ethics approval

The study was approved by the ethics committee of Beijing Huilongguan Hospital. After a complete description of the study to all participants, the written informed consent was obtained.

Availability of data and material

All data are fully available without restriction.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, T., Li, Q., Luo, X. et al. Plasma total antioxidant status and cognitive impairments in first-episode drug-naïve patients with schizophrenia. Cogn Neurodyn 13, 357–365 (2019). https://doi.org/10.1007/s11571-019-09530-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11571-019-09530-3

Keywords

Navigation