Skip to main content
Log in

Nonlinear optimal control for the synchronization of biological neurons under time-delays

  • Research Article
  • Published:
Cognitive Neurodynamics Aims and scope Submit manuscript

Abstract

The article proposes a nonlinear optimal control method for synchronization of neurons that exhibit nonlinear dynamics and are subject to time-delays. The model of the Hindmarsh–Rose (HR) neurons is used as a case study. The dynamic model of the coupled HR neurons undergoes approximate linearization around a temporary operating point which is recomputed at each iteration of the control method. The linearization procedure relies on Taylor series expansion of the model and on computation of the associated Jacobian matrices. For the approximately linearized model of the coupled HR neurons an H-infinity controller is designed. For the selection of the controller’s feedback gain an algebraic Riccati equation is repetitively solved at each time-step of the control algorithm. The stability properties of the control loop are proven through Lyapunov analysis. First, it is shown that the H-infinity tracking performance criterion is satisfied. Moreover, it is proven that the control loop is globally asymptotically stable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Basseville M, Nikiforov I (1993) Detection of abrupt changes: theory and applications. Prentice-Hall, Upper Saddle River

    Google Scholar 

  • Chang CJ, Liuo TL, Yan JJ, Huang CC (2006) Exponential synchronization of a class of neural networks with time-varying delays. IEEE Trans Syst Man Cybern 3(1):209–215

    Google Scholar 

  • Che Y, Wang J, Zhou SS, Deng B (2009a) Robust synchronization control of coupled chaotic nneurons under external electrical stimulus. Chaos Solitons Fractals 40:1333–1342

    Article  Google Scholar 

  • Che Y, Wang J, Zhou SS, Deng B (2009b) Synchronization control of Hodgkin–Huxley neurons exposed to ELF electric field. Chaos Solitons Fractals 40:1588–1598

    Article  Google Scholar 

  • Che YO, Wang J, Tsang KM, Chan WL (2010) Unidirectional synchronization for Hindmarsh–Rose neurons via robust adaptive sliding-mode control. Nonlinear Anal Real World Appl 11:1096–1104

    Article  Google Scholar 

  • Chen SS, Cheng CY, Liu Y (2013) Application of a two-dimensional Hindmarsh–Rose type model for bifurcation analysis. Int J Bifurc Chaos 23(3):1350055

    Article  Google Scholar 

  • Ding K, Han QL (2015) Synchronization of two coupled Hindmarsh–Rose neurons. Kybernetika 51(5):784–799

    Google Scholar 

  • Jiang W, Bing D, Xianyang F (2006) Chaotic synchronization of two coupled neurons via nonlinear control in external electrical stimulus. Chaos Solitons Fractals 27:1272–1278

    Article  Google Scholar 

  • Kim SY, Lin W (2013) Coupling-induced population synchronization in an excitatory population of subthreshold Izhikevich neurons. Cogn Neurodyn 7:495–503

    Article  PubMed  PubMed Central  Google Scholar 

  • Lakshmanan S, Lin CP, Nahavarandi S, Prakash M, Balasubramanian P (2017) Dynamic anaysis of the Hindmarsh–Rose neuron with time delays. IEEE Trans Neural Netw Learn Syst 28(8):1953–1958

    Article  CAS  PubMed  Google Scholar 

  • Li X, Song S (2014) Research on synchronization of chaotic delayed neural networks with stochastic perturbation using impulsive control method. Commun Nonlinear Sci Numer Simul 19:3889–3900

    Google Scholar 

  • Li HY, Wang YK, Chan WI, Chang KM (2010) Synchronization of Ghostburster neurons under external electrical stimulation via adaptive neural network. Neurocomputing 74:230–238

    Article  Google Scholar 

  • Li JS, Dasanayaka J, Ruths J (2013) Control and synchronization of neuron ensembles. IEEE Trans Autom Control 58(8):1919–1930

    Article  Google Scholar 

  • Liu M (2009) Optimal exponential synchronization of general delayed neural networks: an LMI approach. Neural Netw 22:349–357

    Google Scholar 

  • Liu X, Cao J (2011) Local synchronization of one-to-one coupled neural networks with discontinuous activations. Cogn Neurodyn 5:13–30

    Article  PubMed  Google Scholar 

  • Liu X, Ho DWC, Cao J, Xu W (2012) Discontinuous observers design for finite-time consesus of multi-agent systems with external disturbances. IEEE Trans Neural Netw Learn Syst 28(11):2826–2830

    Article  Google Scholar 

  • Liu X, Cao J, Yu W, Song Q (2016) Non-smooth finite-time synchronization of switched coupled neural networks. IEEE Trans Cybern 46(10):2360–2371

    Article  PubMed  Google Scholar 

  • Lublin L, Athans M (1995) An experimental comparison of \(H_2\) and \(H_{\infty }\) designs for interferometer testbed. In: Francis B, Tannenbaum A (eds) Feedback control, nonlinear systems and complexity. Lectures notes in control and information sciences. Springer, New York, pp 150–172

    Google Scholar 

  • Nakano H, Saito T (2004) Grouping synchronization in a pulse-coupled network of chaotic spiking neurons. IEEE Trans Neural Netw 15(5):1018–1026

    Article  CAS  PubMed  Google Scholar 

  • Nguyen LH, Hang KS (2011) Synchronization of coupled chaotic FitzHugh–Nagumo neurons via Lyapunov functions. Math Comput Simul 82:590–604

    Article  Google Scholar 

  • Nguyen LH, Hang KS (2013) Adaptive synchronization of two coupled chaotic Hindmarsh–Rose neurons by controlling the membrane potnetial of a slave neuron. Appl Math Model 37:2460–2468

    Article  Google Scholar 

  • Panchak A, Rosin DP, Hovel P, Schoell E (2013) Synchronization of coupled neural oscillations with heterogeneous delays. Int J Bifurc Chaos 23(12):1330039

    Article  Google Scholar 

  • Rehan M, Hang KS, Aqil M (2011) Synchronization of multiple chaotic FitzHugh–Nagumo neurons with gap junction under external electrical stimulation. Neurocomputing 74:3296–3504

    Article  Google Scholar 

  • Rigatos GG (2011) Modelling and control for intelligent industrial systems: adaptive algorithms in robotics and industrial engineering. Springer, New York

    Book  Google Scholar 

  • Rigatos G (2013) Advanced models of neural networks: nonlinear dynamics and stochasticity in biological neurons. Springer, New York

    Google Scholar 

  • Rigatos G (2015) Nonlinear control and filtering using differential flatness approaches: applications to electromechanicsl systems. Springer, New York

    Book  Google Scholar 

  • Rigatos GG, Tzafestas SG (2007) Extended Kalman filtering for fuzzy modelling and multi-sensor fusion. Math Comput Model Dyn Syst 13:251–266

    Article  Google Scholar 

  • Rigatos G, Zhang Q (2009) Fuzzy model validation using the local statistical approach. Fuzzy Sets Syst 60(7):882–904

    Article  Google Scholar 

  • Rigatos G, Rigatou E, Zervos N (2016) A nonlinear H-infinity approach to optimal control of the depth of anaesthesia. In: ICCMSE 2016, 12th international conference of computational methods in sciences and engineering, Athems, Greece

  • Rigatos G, Siano P, Melkikh A (2017a) A nonlinear optimal control approach of insulin infusion for blood-glucose levels regulation. J Intell Ind Syst 3(2):91–102

    Article  Google Scholar 

  • Rigatos G, Siano P, Ademi S, Wira P (2017b) An adaptive neurofuzzy H-infinity control method for bioreactors and biofuels production. In: IEEE IECON 2017—43rd annual conference of the IEEE industrial electronics society, Beijing, China

  • Ruths J, Taylor PN, Danwels J (2014) Optimal control for an epileptic neural population model. In: 19th IFAC world congress, Cape-Town, South Africa

  • Sun W, Wang R, Wang W, Cao J (2012) Analyzing inner and outer synchronization between two coupled discrete-time networks with delays. Cogn Neurodyn 4:225–231

    Article  Google Scholar 

  • Toussaint GJ, Basar T, Bullo F (2000) \(H_{\infty }\) optimal tracking control techniques for nonlinear underactuated systems. In: Proceedings of the IEEE CDC 2000, 39th IEEE conference on decision and control, Sydney Australia

  • Wan Y, Cao J, Wan G (2017) Quantized synchronization of chaotic neural networks with scheduled output feedback control. IEEE Trans Neural Netw Learn Syst 28(11):2638–2647

    Article  PubMed  Google Scholar 

  • Wang Z, Shi X (2013) Lag synchronization of two-indentical Hindmarsh–Rose neuron systems with mismatched parameters and external disturbances via a single sliding-mode controller. Appl Math Comput 218:1914–1921

    Google Scholar 

  • Wang H, Wang Q, Liu Q, Zhang Y (2013) Equilibrium analysis and phase synchronization of two coupled HR neurons with gap junction. Cogn Neurodyn 7:121–131

    Article  PubMed  Google Scholar 

  • Wu Y, Liu L, Hu J, Feng G (2018) Adaptive antisynchronization of multi-layer reaction-diffusion neural networks. IEEE Trans Neural Netw Learn Syst 29(4):807–818

    Article  PubMed  Google Scholar 

  • Yang X, Cao J, Long Y, Rui W (2010) Adaptive lag synchronization for competitive neural networks with mixed delays and uncertain hybrid perturbations. IEEE Trans Neural Netw 21(10):1656–1667

    Article  PubMed  Google Scholar 

  • Yu H, Peng J (2006) Chaotic synchronnization and control in nonlinear-coupled Hindmarsh–Rose neural systems. Chaos Solitons Fractals 29:342–348

    Article  Google Scholar 

  • Yu H, Wang J, Deng B, Wai X, Che Y, Wang YK, Chen WL, Tsang KM (2012) Adaptive backstepping sliding-mode control for chaos synchronization of two coupled neurons in the external electrical stimulation. Commun Nonlinear Sci Numer Simul 17:1344–1354

    Article  Google Scholar 

Download references

Acknowledgements

Funding was provided by Unit of Industrial Automation/Industrial Systems Institute (Grant No. Ref 5805 - Advances in applied nonlinear optimal control).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Rigatos.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rigatos, G., Wira, P. & Melkikh, A. Nonlinear optimal control for the synchronization of biological neurons under time-delays. Cogn Neurodyn 13, 89–103 (2019). https://doi.org/10.1007/s11571-018-9510-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11571-018-9510-4

Keywords

Navigation