Skip to main content
Log in

Neurodynamic analysis of Merkel cell–neurite complex transduction mechanism during tactile sensing

  • Research Article
  • Published:
Cognitive Neurodynamics Aims and scope Submit manuscript

Abstract

The present study aimed to identify the mechanism of tactile sensation by analyzing the regularity of the firing pattern of Merkel cell–neurite complex (MCNC) under the stimulation of different compression depths. The fingertips were exposed to the contact pressure of a spherical object to sense external stimuli in this study. The distribution structure of slowly adapting type I (SAI) mechanoreceptors was considered for analyzing the neural coding of tactile stimuli, especially the firing pattern of SAI neural network for perceiving the external stimulation. The numerical simulation results showed that (1) when the skin was pressed by the same sphere and the depth of the pressing finger skin and position of the force application point remained unchanged, the firing rate of the neuron depended on the synergistic effect of the number of receptors connected with the neuron and the distance between the neuron and the force application point. (2) When the fingertip was pressed by the same sphere at a constant depth and the different contact position, the overall firing rate of the MCNC neural network increased with the number of SAI mechanoreceptors in the area where the force application point was located.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abraira VE, Ginty DD (2013) The sensory neurons of touch. Neuron 79(4):618–639

    Article  CAS  Google Scholar 

  • Aouiti C (2016) Neutral impulsive shunting inhibitory cellular neural networks with time-varying coefficients and leakage delays. Cogn Neurodyn 10(6):573–591

    Article  Google Scholar 

  • Bessou P, Perl ER (1969) Response of cutaneous sensory units with unmyelinated fibers to noxious stimuli. J Neurophysiol 32(6):1025–1043

    Article  CAS  Google Scholar 

  • Briggaman RA, Wheeler CE Jr (1975) The epidermal-dermal junction. J Investig Dermatol 65(1):71–84

    Article  CAS  Google Scholar 

  • Burgess PR, Howe JF, Lessler MJ et al (1974) Cutaneous Receptors supplied by myelinated fibers in the cat. II. number of mechanoreceptors excited by a local stimulus. J Neurophysiol 37(6):1373–1386

    Article  CAS  Google Scholar 

  • Chan E, Yung WH, Baumann KI (1996) Cytoplasmic Ca2+ concentrations in intact merkel cells of an isolated, functioning rat sinus hair preparation. Exp Brain Res 108(3):357–366

    Article  CAS  Google Scholar 

  • Gerling GJ (2010) SA-I mechanoreceptor position in fingertip skin may impact sensitivity to edge stimuli. Appl Bion Biomech 7(1):19–29

    Article  Google Scholar 

  • Gerling GJ, Thomas GW (2008) Fingerprint lines may not directly affect SAI mechanoreceptor response. Somatosens Mot Res 25(1):61–76

    Article  Google Scholar 

  • Goodwin A, Wheat H (1999) Effects of nonuniform fiber sensitivity, innervation geometry, and noise on information relayed by a population of slowly adapting type I primary afferents from the fingerpad. J Neurosci 19(18):8057–8070

    Article  CAS  Google Scholar 

  • Güçlü B, Bolanowski SJ (2002) Modeling population responses of rapidly-adapting mechanoreceptive fibers. J Comput Neurosci 12(3):201–218

    Article  Google Scholar 

  • Güçlü B, Mahoney GK, Pawson LJ et al (2008) Localization of merkel cells in the monkey skin: an anatomical model. Somatosens Res 25(2):123–138

    Article  Google Scholar 

  • Hodgkin AL, Huxley AF (1990) A quantitative description of membrane current and its application to conduction and excitation in nerve. Bull Math Biol 52(1):25–71

    Article  CAS  Google Scholar 

  • Iggo A, Muir AR (1969) The structure and function of a slowly adapting touch corpuscle in hairy skin. J Physiol 200(3):763–796

    Article  CAS  Google Scholar 

  • Johansson RS, Vallbo AB (1980) Spatial properties of the population of mechanoreceptive units in the glabrous skin of the human hand. Brain Res 184(2):66–353

    Google Scholar 

  • Johansson RS, Landström U, Lundström R (1982) Sensitivity to edges of mechanoreceptive afferent units innervating the glabrous skin of the human head. Brain Res 244(1):27–35

    Article  CAS  Google Scholar 

  • Johnson KO (2001) The roles and functions of cutaneous mechanoreceptors. Curr Opin Neurobiol 11(4):455–461

    Article  CAS  Google Scholar 

  • Johnson KO, Yoshioka T, Vegabermudez F (2000) Tactile functions of mechanoreceptive afferents innervating the hand. J Clin Neurophysiol 17(6):539–558

    Article  CAS  Google Scholar 

  • Kim EK,Gerling GJ,Wellnitz SA et al (2010) Using force sensors and neural models to encode tactile stimuli as spike-based responses. In: Proceedings of Symposium Haptic Interface Virtual Environment and Teleoperator Systems, 2010, pp 195–198

  • Maeno T, Kobayashi K, Yamazaki N (1998) Relationship between the structure of human finger tissue and the location of tactile receptors. JSME Int J Ser C Mech Syst Mach Elem Manuf 41(2):566–573

    Google Scholar 

  • Maio VD, Ventriglia F, Santillo S (2016) A model of cooperative effect of AMPA and NMDA receptors in glutamatergic synapses. Cogn Neurodyn 10(4):315–325

    Article  Google Scholar 

  • Maksimovic S, Nakatani M, Baba Y et al (2014) Epidermal merkel cells are mechanosensory cells that tune mammalian touch receptors. Nature 509(7502):617–621

    Article  CAS  Google Scholar 

  • Manivannan R, Samidurai R, Cao J et al (2016) New delay-interval-dependent stability criteria for switched Hopfield neural networks of neutral type with successive time-varying delay components. Cogn Neurodyn 10(6):543–562

    Article  CAS  Google Scholar 

  • Marshall KL, Lumpkin EA (2012) The molecular basis of mechanosensory transduction. Adv Exp Med Biol 739:142–155

    Article  CAS  Google Scholar 

  • Mizraji E, Lin J (2017) The feeling of understanding: an exploration with neural models. Cogn Neurodyn 11(2):135–146

    Article  Google Scholar 

  • Montagna W, Kligman AM, Ms KSC (1993) Atlas of normal human skin. Springer, Berlin

    Google Scholar 

  • Munger BL, Ide C (2011) The structure and function of cutaneous sensory receptors. Arch Histol Cytol 51(1):1–34

    Article  Google Scholar 

  • Peters JF, Tozzi A, Ramanna S et al (2017) The human brain from above: an increase in complexity from environmental stimuli to abstractions. Cogn Neurodyn 11(4):391–394

    Article  Google Scholar 

  • Phillips JR, Johnson KO (1981a) Tactile spatial resolution. III. A continuum mechanics model of skin predicting mechanoreceptor responses to bars, edges, and gratings. J Neurophysiol 46(6):1204–1225

    Article  CAS  Google Scholar 

  • Phillips JR, Johnson KO (1981b) Tactile spatial resolution. II. neural representation of bars, edges, and gratings in monkey primary afferents. J Neurophysiol 46(6):1192–1203

    Article  CAS  Google Scholar 

  • Reid CA, Bekkers JM, Clements JD (2003) Presynaptic Ca2+ channels: a functional patchwork. Trends Neurosci 26(12):683–687

    Article  CAS  Google Scholar 

  • Rubinov M, Sporns O, Thivierge JP et al (2011) Neurobiologically realistic determinants of self-organized criticality in networks of spiking neurons. PLoS Comput Biol 7(6):e1002038

    Article  CAS  Google Scholar 

  • Shimawaki S, Sakai N (2007) Quasi-static deformation analysis of a human finger using a three-dimensional finite element model constructed from Ct images. J Environ Eng 2(1):56–63

    Article  Google Scholar 

  • Srinivasan MA, Lamotte RH (1996) Abilities and mechanisms. Tactual Discrimination of Softness. Birkhäuser, Basel, pp 123–135

    Google Scholar 

  • Sripati AP, Bensmaia SJ, Johnson KO (2006) A continuum mechanical model of mechanoreceptive afferent responses to indented spatial patterns. J Neurophysiol 95(6):3852–3864

    Article  Google Scholar 

  • Tazaki M, Suzuki T (1998) Calcium inflow of hamster merkel cells in response to hyposmotic stimulation indicate a stretch activated ion channel. Neurosci Lett 243(1):69–72

    Article  CAS  Google Scholar 

  • Wang Y, Baba Y, Lumpkin EA et al (2016) Computational modeling indicates that surface pressure can be reliably conveyed to tactile receptors even amidst changes in skin mechanics. J Neurophysiol 116(1):218–228

    Article  Google Scholar 

  • Wei H, Bu Y, Dai D (2017) A decision-making model based on a spiking neural circuit and synaptic plasticity. Cogn Neurodyn 11(5):415–431

    Article  Google Scholar 

  • Wheat HE, Goodwin AW (2000) Tactile discrimination of gaps by slowly adapting afferents: effects of population parameters and anisotropy in the fingerpad. J Neurophysiol 84(3):1430–1444

    Article  CAS  Google Scholar 

  • Woo SH, Ranade S, Weyer AD et al (2014) Piezo2 is required for merkel-cell mechanotransduction. Nature 509(7502):622–626

    Article  CAS  Google Scholar 

  • Woo SH, Lumpkin EA, Patapoutian A (2015) Merkel cells and neurons keep in touch. Trends Cell Biol 25(2):74–81

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (NSFC) (11232005, 11472104, 61633010, 61473110).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rubin Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yao, M., Wang, R. Neurodynamic analysis of Merkel cell–neurite complex transduction mechanism during tactile sensing. Cogn Neurodyn 13, 293–302 (2019). https://doi.org/10.1007/s11571-018-9507-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11571-018-9507-z

Keywords

Navigation