Skip to main content

The informational entropy endowed in cortical oscillations

Abstract

A two-dimensional shadow may encompass more information than its corresponding three-dimensional object. Indeed, if we rotate the object, we achieve a pool of observed shadows from different angulations, gradients, shapes and variable length contours that make it possible for us to increase our available information. Starting from this simple observation, we show how informational entropies might turn out to be useful in the evaluation of scale-free dynamics in the brain. Indeed, brain activity exhibits a scale-free distribution that leads to the variations in the power law exponent typical of different functional neurophysiological states. Here we show that modifications in scaling slope are associated with variations in Rényi entropy, a generalization of Shannon informational entropy. From a three-dimensional object’s perspective, by changing its orientation (standing for the cortical scale-free exponent), we detect different two-dimensional shadows from different perception angles (standing for Rényi entropy in different brain areas). We show how, starting from known values of Rényi entropy (easily detectable in brain fMRIs or EEG traces), it is feasible to calculate the scaling slope in a given moment and in a given brain area. Because changes in scale-free cortical dynamics modify brain activity, this issue points towards novel approaches to mind reading and description of the forces required for transcranial stimulation.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  • A-yeh E, Peters JF (2016) Rényi entropy in measuring information levels in Voronoï tessellation cells with application in digital image analysis. Theory Appl Math Comput Sci 6(16):77–95

    Google Scholar 

  • Bak P, Tang C, Wiesenfeld K (1987) Self-organized criticality: an explanation of the 1/f noise. Phys Rev Lett 59(4):381–384

    CAS  Article  PubMed  Google Scholar 

  • Buiatti M, Papo D, Baudonnière P-M, van Vreeswijk C (2007) Feedback modulates the temporal scale-free dynamics of brain electrical activity in a hypothesis testing task. Neuroscience 146:1400–1412. https://doi.org/10.1016/j.neuroscience.2007.02.048

    CAS  Article  PubMed  Google Scholar 

  • Buzsáki G, Watson BO (2012) Brain rhythms and neural syntax: implications for efficient coding of cognitive content and neuropsychiatric disease. Dialogues Clin Neurosci 4:345–367

    Google Scholar 

  • Cambell LL (1965) A coding theorem and Rényi entropy. Inf Control 8(4):423–429

    Article  Google Scholar 

  • Çankaya MN, Bulut YM, Doğru FZ, Arslan O (2015) A bimodal extension of the generalized gamma distribution. Revista Colombiana de Estadística 38(2):371–378

    Article  Google Scholar 

  • Carranza ML, Acosta A, Ricotta C (2007) Analyzing landscape diversity in time: the use of Rényi’s generalized entropy function. Ecol Indic 7:505–510

    Article  Google Scholar 

  • Costa M, Goldberger AL, Peng CK (2005) Multiscale entropy analysis of biological signals. Phys Rev E Stat Nonlinear Softw Matter Phys 71(2):021906

    Article  CAS  Google Scholar 

  • de Arcangelis L, Herrmann HJ (2010) Learning as a phenomenon occurring in a critical state. Proc Natl Acad Sci 107:3977–3981

    Article  PubMed  Google Scholar 

  • De Luca E, Novelli C, Barbato F, Menegoni P, Iannetta M, Nascetti G (2011) Coastal dune systems and disturbance factors: monitoring and analysis in central Italy. Environ Monit Assess 183:437–450

    CAS  Article  PubMed  Google Scholar 

  • Déli E, Tozzi A, Peters JF (2017) Relationships between short and fast brain timescales. Cogn Neurodyn 11(6):539–552

    Article  PubMed  Google Scholar 

  • Dong X (2016) The gravity dual of Rényi entropy. Nat Commun 7:12472. https://doi.org/10.1038/ncomms12472

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Drius M, Malavasi M, Rosario Acosta AT, Ricotta C, Carranza ML (2013) Boundary-based analysis for the assessment of coastal dune landscape integrity over time. Appl Geogr 45:41–48

    Article  Google Scholar 

  • Fetterhoff D, Opris I, Simpson SL, Deadwyler SA, Hampson RE, Kraft RA (2014) Multifractal analysis of information processing in hippocampal neural ensembles during working memory under Δ9-tetrahydrocannabinol administration. J Neurosci Methods. https://doi.org/10.1016/j.jneumeth.2014.07.013

    Article  PubMed  PubMed Central  Google Scholar 

  • Fingelkurts AA, Fingelkurts AA (2001) Operational architectonics of the human brain biopotential field: towards solving the mind-brain problem. Brain Mind 2:261–296

    Article  Google Scholar 

  • Fingelkurts AA, Fingelkurts AA (2010) Alpha rhythm operational architectonics in the continuum of normal and pathological brain states: current state of research. Int J Psychophysiol 76:93–106

    Article  PubMed  Google Scholar 

  • Fingelkurts AA, Fingelkurts AA (2015) Operational architectonics methodology for EEG analysis: theory and results. Neuromethods 91:1–59. https://doi.org/10.1007/7657_2013_60

    Article  Google Scholar 

  • Fingelkurts AA, Fingelkurts AA, Neves CFH (2009) Phenomenological architecture of mind and operational architectonics of the brain: the unified metastable continuum. New Math Nat Comput 5:221–244

    Article  Google Scholar 

  • Fingelkurts AA, Fingelkurts AA, Neves CFH (2010) Natural world physical, brain operational, and mind phenomenal space-time. Phys Life Rev 7:195–249

    Article  PubMed  Google Scholar 

  • Fingelkurts AA, Fingelkurts AA, Neves CFH (2013a) Consciousness as a phenomenon in the operational architectonics of brain organization: criticality and self-organization considerations. Chaos Solitons Fract 55:13–31

    Article  Google Scholar 

  • Fingelkurts AA, Fingelkurts AA, Neves CFH (2013b) The structure of brain electromagnetic field relates to subjective experience: Exogenous magnetic field stimulation study. Presented at Neuroscience Finland 2013 meeting: optogenetics and brain stimulation, Helsinki, 22 Mar 2013

  • Fox MD, Raichle ME (2007) Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nat Rev Neurosci 8:700–711

    CAS  Article  PubMed  Google Scholar 

  • Fraiman D, Chialvo DR (2012) What kind of noise is brain noise: anomalous scaling behavior of the resting brain activity fluctuations. Front Physiol 3:307. https://doi.org/10.3389/fphys.2012.00307

    Article  PubMed  PubMed Central  Google Scholar 

  • Gorelick R (2006) Combining richness and abundance into a single diversity index using matrix analogues of Shannon’s and Simpson’s indices. Ecography 29:525–530

    Article  Google Scholar 

  • Gravier A, Quek C, Duch W, Wahab A, Gravier-Rymaszewska J (2016) Neural network modelling of the influence of channelopathies on reflex visual attention. Cogn Neurodyn 10(1):49–72. https://doi.org/10.1007/s11571-015-9365-x (Epub 9 Nov 2015)

    Article  PubMed  Google Scholar 

  • He BJ, Zempel JM, Snyder AZ, Raichle ME (2010) The temporal structures and functional significance of scale-free brain activity. Neuron 66(3):353–369. https://doi.org/10.1016/j.neuron.2010.04.020

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Hentschel GHE, Proccacia I (1983) The infinite number of generalized dimensions in fractals and strange attractors. Physica D 8(3):435–444

    Article  Google Scholar 

  • Jauregui M, Zunino L, Lenzi EK, Mendes RS, Ribeiro HV (2018) Characterization of time series via Rényi complexity-entropy curve. Proc R Soc Lond Ser A Math Phys Eng Sci 498:74–85

    Google Scholar 

  • Jirsa VK, Stacey WC, Quilichini PP, Ivanov AI, Bernard C (2014) On the nature of seizure dynamics. Brain 137(Pt 8):2210–2230. https://doi.org/10.1093/brain/awu133

    Article  PubMed  PubMed Central  Google Scholar 

  • Jizba P, Arimitsu T (2001) The world according to Renyi: thermodynamics of fractal systems. AIP Conf Proc 597:341–348

    Article  Google Scholar 

  • Jizba P, Korbel J (2014) Multifractal diffusion entropy analysis. Physica A 413:438–458

    Article  Google Scholar 

  • Jizba P, Kleinert H, Shefaat M (2012) Rényi information transfer between financial time series. Physica A 391(10):2971

    Article  Google Scholar 

  • Jost L (2007) Partitioning diversity into independent alpha and beta components. Ecology 88(10):2427–2439

    Article  Google Scholar 

  • Jost L (2010) The relation between evenness and diversity. Diversity 2:207–232

    Article  Google Scholar 

  • Linkenkaer-Hansen K, Nikouline VV, Palva JM, Ilmoniemi RJ (2001) Long-range temporal correlations and scaling behavior in human brain oscillations. J Neurosci 21(4):1370–1377

    CAS  Article  PubMed  Google Scholar 

  • Megam Ngouonkadi EB, Fotsin HB, Nono MK, Fotso PHL (2016) Noise effects on robust synchronization of a small pacemaker neuronal ensemble via nonlinear controller: electronic circuit design. Cogn Neurodyn 10(5):385–404. https://doi.org/10.1007/s11571-016-9393-1 (Epub 11 Jun 2016)

    Article  PubMed  PubMed Central  Google Scholar 

  • Milstein J, Mormann F, Fried I, Koch C (2009) Neuronal shot noise and Brownian 1/f2 behavior in the local field potential. PLoS ONE 4(2):4338. https://doi.org/10.1371/journal.pone.0004338

    CAS  Article  Google Scholar 

  • Müller F, Hoffmann-Kroll R, Wiggering H (2000) Indicating ecosystem integrity e theoretical concepts and environmental requirements. Ecol Model 130:13–23

    Article  Google Scholar 

  • Newman MEJ (2005) Power laws, Pareto distributions and Zipf’s law. Contemp Phys 46:323–351

    Article  Google Scholar 

  • Papo D (2014) Functional significance of complex fluctuations in brain activity: from resting state to cognitive neuroscience. Front Syst Neurosci 8:112. https://doi.org/10.3389/fnsys.2014.00112

    Article  PubMed  PubMed Central  Google Scholar 

  • Patil GP, Taillie C (2001) A multiscale hierarchical Markov transition matrix model for generating and analyzing thematic raster maps. Environ Ecol Stat 8:5–20

    Article  Google Scholar 

  • Perkins TJ, Foxall E, Glass L, Edwards R (2014) A scaling law for random walks on networks. Nat Commun 5:5121. https://doi.org/10.1038/ncomms6121

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Peters JF (2017) Foundations of computer vision. Computational geometry, visual image structures and object shape recognition. Springer, Berlin. https://doi.org/10.1007/978-3-319-52483-2

    Book  Google Scholar 

  • Peters JF, Ramanna S (2016) Maximal nucleus clusters in Pawlak paintings. Nerves as approximating tools in visual arts. Proc Fed Conf Comp Sci Info Syst 8:199–202. https://doi.org/10.15439/2016F004

    Article  Google Scholar 

  • Peters JF, Tozzi A, Ramanna S, İnan E (2017) The human brain from above: an increase in complexity from environmental stimuli to abstractions. Cogn Neurodyn 11(4):391–394

    Article  PubMed  PubMed Central  Google Scholar 

  • Podani J (1992) Space series analysis: processes reconsidered. Abstracta Botanica 16:25–29

    Google Scholar 

  • Popivanov D, Stomonyakov V, Minchev Z, Jivkova S, Dojnov P et al (2006) Multifractality of decomposed EEG during imaginary and real visual-motor tracking. Biol Cybern 94:149–156

    CAS  Article  PubMed  Google Scholar 

  • Pritchard WS (1992) The brain in fractal time: 1/f-like power spectrum scaling of the human electroencephalogram. Int J Neurosci 66:119–129

    CAS  Article  PubMed  Google Scholar 

  • Reato D, Rahman A, Bikson M, Parra LC (2013) Effects of weak transcranial alternating current stimulation on brain activity—a review of known mechanisms from animal studies. Front Human Neurosci 7:687

    Article  Google Scholar 

  • Rényi A (1961) On measures of entropy and information. In: Proc fourth Berkeley symp math stat and probability, vol I. University of California Press, Berkeley, pp 547–457. MR0132570

  • Rényi A (1966) On the amount of information in a random variable concerning an event. J Math Sci 1:30–33

    Google Scholar 

  • Ricotta C, Avena G (2003) On the relationship between Pielou’s evenness and landscape dominance within the context of Hill’s diversity profiles. Ecol Indic 2:361–365

    Article  Google Scholar 

  • Rocchini D, Delucchi L, Bacaro G, Cavallini P, Feilhauer H et al (2013) Calculating landscape diversity with information-theory based indices: a GRASS GIS solution. Ecol Inf 17:82–89

    Article  Google Scholar 

  • Shalymov DS, Fradkov AL (2016) Dynamics of non-stationary processes that follow the maximum of the Rényi entropy principal. Proc R Soc Lond Ser A Math Phys Eng Sci 472(2185):20150324

    Article  Google Scholar 

  • Shannon CE (1948) A mathematical theory of information. Bell Syst Tech J 27:379–423

    Article  Google Scholar 

  • Słomczynski W, Kwapien J, Zyczkowski K (2000) Entropy computing via integration over fractal measures. Chaos 10(1):180–188

    Article  PubMed  Google Scholar 

  • Suckling J, Wink AM, Bernard FA, Barnes A, Bullmore E (2008) Endogenous multifractal brain dynamics are modulated by age, cholinergic blockade and cognitive performance. J Neurosci Methods 174(2):292–300. https://doi.org/10.1016/j.jneumeth.2008.06.037

    Article  PubMed  PubMed Central  Google Scholar 

  • Sunderam S, Chernyy N, Peixoto N, Mason JP, Weinstein SL et al (2009) Seizure entrainment with polarizing low-frequency electric fields in a chronic animal epilepsy model. J Neural Eng 6(4):046009. https://doi.org/10.1088/1741-2560/6/4/046009

    Article  PubMed  PubMed Central  Google Scholar 

  • Tinker J, Velazquez JL (2014) Power law scaling in synchronization of brain signals depends on cognitive load. Front Syst Neurosci 8:73. https://doi.org/10.3389/fnsys.2014.00073

    Article  PubMed  PubMed Central  Google Scholar 

  • Tozzi A (2014) Evolution: networks and energy count. Nature 515:343. https://doi.org/10.1038/515343c

    CAS  Article  PubMed  Google Scholar 

  • Tozzi A (2015) How to turn an oscillation in a pink one. J Theor Biol 377:117–118. https://doi.org/10.1016/j.jtbi.2015.04.018

    Article  PubMed  Google Scholar 

  • Tozzi A, Peters JF (2016) Towards a fourth spatial dimension of brain activity. Cogn Neurodyn 10(3):189–199

    Article  PubMed  PubMed Central  Google Scholar 

  • Tribukait A, Eiken O (2016) On the time course of short-term forgetting: a human experimental model for the sense of balance. Cogn Neurodyn 10(1):7–22

    Article  PubMed  Google Scholar 

  • Tsallis C (1988) Possible generalization of Boltzman-Gibbs statistics. J Stat Phys 52(2):479–487

    Article  Google Scholar 

  • Van de Ville D, Britz J, Michel CM (2010) EEG microstate sequences in healthy humans at rest reveal scale-free dynamics. PNAS 107(42):18179–18184. https://doi.org/10.1073/pnas.1007841107

    Article  PubMed  Google Scholar 

  • Van Essen DC (2005) A population-average, landmark- and surface-based (PALS) atlas of human cerebral cortex. Neuroimage 28:635–666

    Article  PubMed  Google Scholar 

  • Watanabe T, Masuda N, Megumi F, Kanai R, Rees G (2014) Energy landscape and dynamics of brain activity during human bistable perception. Nat Commun 28(5):4765. https://doi.org/10.1038/ncomms5765

    CAS  Article  Google Scholar 

  • Wink AM, Bullmore E, Barnes A, Bernard F, Suckling J (2008) Monofractal and multifractal dynamics of low frequency endogenous brain oscillations in functional MRI. Human Brain Mapp 29(7):791–801. https://doi.org/10.1002/hbm.20593

    Article  Google Scholar 

Download references

Acknowledgements

The Authors would like to thank Andrew and Alexander Fingelkurts for commenting upon an earlier version of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arturo Tozzi.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tozzi, A., Peters, J.F. & Çankaya, M.N. The informational entropy endowed in cortical oscillations. Cogn Neurodyn 12, 501–507 (2018). https://doi.org/10.1007/s11571-018-9491-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11571-018-9491-3

Keywords

  • Rényi entropy
  • Power laws
  • Nervous system
  • Scale-free
  • Shadows
  • Central nervous system