Skip to main content
Log in

Detecting epileptic seizure with different feature extracting strategies using robust machine learning classification techniques by applying advance parameter optimization approach

  • Research Article
  • Published:
Cognitive Neurodynamics Aims and scope Submit manuscript

Abstract

Epilepsy is a neurological disorder produced due to abnormal excitability of neurons in the brain. The research reveals that brain activity is monitored through electroencephalogram (EEG) of patients suffered from seizure to detect the epileptic seizure. The performance of EEG detection based epilepsy require feature extracting strategies. In this research, we have extracted varying features extracting strategies based on time and frequency domain characteristics, nonlinear, wavelet based entropy and few statistical features. A deeper study was undertaken using novel machine learning classifiers by considering multiple factors. The support vector machine kernels are evaluated based on multiclass kernel and box constraint level. Likewise, for K-nearest neighbors (KNN), we computed the different distance metrics, Neighbor weights and Neighbors. Similarly, the decision trees we tuned the paramours based on maximum splits and split criteria and ensemble classifiers are evaluated based on different ensemble methods and learning rate. For training/testing tenfold Cross validation was employed and performance was evaluated in form of TPR, NPR, PPV, accuracy and AUC. In this research, a deeper analysis approach was performed using diverse features extracting strategies using robust machine learning classifiers with more advanced optimal options. Support Vector Machine linear kernel and KNN with City block distance metric give the overall highest accuracy of 99.5% which was higher than using the default parameters for these classifiers. Moreover, highest separation (AUC = 0.9991, 0.9990) were obtained at different kernel scales using SVM. Additionally, the K-nearest neighbors with inverse squared distance weight give higher performance at different Neighbors. Moreover, to distinguish the postictal heart rate oscillations from epileptic ictal subjects, and highest performance of 100% was obtained using different machine learning classifiers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Acharya UR, Fujita H, Sudarshan VK, Bhat S, Koh JEW (2015) Application of entropies for automated diagnosis of epilepsy using EEG signals: a review. Knowl Based Syst 88:85–96

    Article  Google Scholar 

  • Adeli H, Zhou Z, Dadmehr N (2003) Analysis of EEG records in an epileptic patient using wavelet transform. J Neurosci Methods 123:69–87

    Article  PubMed  Google Scholar 

  • Al-Aweel IC, Krishnamurthy KB, Hausdorff JM, Mietus JE, Ives JR, Blum AS, Schomer DLGAL (1999) Post-ictal heart rate oscillations in partial epilepsy. Neurology 53:1590–1592

    Article  CAS  PubMed  Google Scholar 

  • Andrzejak RG, Lehnertz K, Mormann F, Rieke C, David P, Elger CE (2001) Indications of nonlinear deterministic and finite-dimensional structures in time series of brain electrical activity: dependence on recording region and brain state. Phys Rev E Stat Nonlinear Soft Matter Phys 64:61907

    Article  CAS  Google Scholar 

  • Avci E, Hanbay D, Varol A (2007) An expert discrete wavelet adaptive network based fuzzy inference system for digital modulation recognition. Expert Syst Appl 33:582–589

    Article  Google Scholar 

  • Ayoubian L, Lacoma H, Gotman J (2013) Automatic seizure detection in SEEG using high frequency activities in wavelet domain. Med Eng Phys 35:319–328

    Article  CAS  PubMed  Google Scholar 

  • Bashar SK, Hassan AR, Bhuiyan MIH (2015) Identification of motor imagery movements from EEG signals using Dual Tree Complex Wavelet Transform. Int Conf Adv Comput Commun Inform 2015:290–296

    Google Scholar 

  • Bashar SK, Hassan AR, Bhuiyan MIH (2016) Motor imagery movements classification using multivariate EMD and short time Fourier transform. In: 12th IEEE International conference on electronics, energy, environment, communication, computers, control (E3-C3), INDICON 2015, pp 1–6

  • Bengio Y, Lecun Y (2007) Scaling learning algorithms towards AI. Large Scale Kernel Mach 34:321–360

    Google Scholar 

  • Bigger JT, Kleiger RE, Fleiss JL, Rolnitzky LM, Steinman RC, Miller JP (2016) Components of heart rate variability measured during healing of acute myocardial infarction. Am J Cardiol 9149:208–215

    Google Scholar 

  • Bilchick KC, Fetics B, Djoukeng R, Gross Fisher S, Fletcher RD, Singh SN, Nevo E, Berger RD (2002) Prognostic value of heart rate variability in chronic congestive heart failure (Veterans Affairs’ Survival Trial of Antiarrhythmic Therapy in Congestive Heart Failure). Am J Cardiol 90:24–28

    Article  PubMed  Google Scholar 

  • Burges CJC (1998) A tutorial on support vector machines for pattern recognition. Data Min Knowl Discov 2:121–167

    Article  Google Scholar 

  • Casolo GC, Stroder P, Signorini C, Calzolari F, Zucchini M, Balli E, Sulla A, Lazzerini S (1992) Heart rate variability during the acute phase of myocardial infarction. Circulation 85:2073–2079

    Article  CAS  PubMed  Google Scholar 

  • Choi A, Shin H (2017) Photoplethysmography sampling frequency: pilot assessment of how low can we go to analyze pulse rate variability with reliability? Physiol Meas 38:586–600

    Article  CAS  PubMed  Google Scholar 

  • Chou KC (2005) Using amphiphilic pseudo amino acid composition to predict enzyme subfamily classes. Bioinformatics 21:10–19

    Article  CAS  PubMed  Google Scholar 

  • Chou KC, Bin SH (2007) Recent progress in protein subcellular location prediction. Anal Biochem 370:1–16

    Article  CAS  PubMed  Google Scholar 

  • Chou KC, Shen HB (2007a) Signal-CF: a subsite-coupled and window-fusing approach for predicting signal peptides. Biochem Biophys Res Commun 357:633–640

    Article  CAS  PubMed  Google Scholar 

  • Chou K-C, Shen H-B (2007b) Euk-mPLoc: a fusion classifier for large-scale eukaryotic protein subcellular location prediction by incorporating multiple sites. J Proteome Res 6:1728–1734

    Article  CAS  PubMed  Google Scholar 

  • Costa M, Goldberger AL, Peng C-KC-K (2002) Multiscale entropy analysis of complex physiologic time series. Phys Rev Lett 89:68102

    Article  CAS  Google Scholar 

  • Dheeba J, Albert Singh N, Tamil Selvi S (2014) Computer-aided detection of breast cancer on mammograms: a swarm intelligence optimized wavelet neural network approach. J Biomed Inform 49:45–52

    Article  CAS  PubMed  Google Scholar 

  • Dobrowolski AP, Wierzbowski M, Tomczykiewicz K (2012) Multiresolution MUAPs decomposition and SVM-based analysis in the classification of neuromuscular disorders. Comput Methods Programs Biomed 107:393–403

    Article  PubMed  Google Scholar 

  • Dodds KL, Miller CB, Kyle SD, Marshall NS, Gordon CJ (2017) Heart rate variability in insomnia patients: a critical review of the literature. Sleep Med Rev 33:88–100

    Article  PubMed  Google Scholar 

  • Dragotti PL, Vetterli M (2003) Wavelet Footprints: theory. Algorithms Appl 51:1306–1323

    Google Scholar 

  • Erfani SM, Baktashmotlagh M, Rajasegarar S, Karunasekera S, Leckie C (2015) R1SVM: a randomised nonlinear approach to large-scale anomaly detection. Proc Natl Conf Artif Intell 1:432–438

    Google Scholar 

  • Esco MR, Williford HN, Flatt AA, Freeborn TJ, Nakamura FY (2017) Ultra-shortened time-domain HRV parameters at rest and following exercise in athletes: an alternative to frequency computation of sympathovagal balance. Eur J Appl Physiol 0:1–10

    Google Scholar 

  • Faust O, Acharya UR, Adeli H, Adeli A (2015) Wavelet-based EEG processing for computer-aided seizure detection and epilepsy diagnosis. Seizure 26:56–64

    Article  PubMed  Google Scholar 

  • Ferland RJ, Smith J, Papandrea D, Gracias J, Hains L, Kadiyala SB, O’Brien B, Kang EY, Beyer BS, Herron BJ (2017) Multidimensional genetic analysis of repeated seizures in the hybrid mouse diversity panel reveals a novel epileptogenesis susceptibility locus. G3 Genes Genomes Genet. https://doi.org/10.1534/g3.117.042234

  • Fu K, Qu J, Chai Y, Zou T (2015) Hilbert marginal spectrum analysis for automatic seizure detection in EEG signals. Biomed Signal Process Control 18:179–185

    Article  Google Scholar 

  • Fujita H, Acharya UR, Sudarshan VK, Ghista DN, Sree SV, Eugene LWJ, Koh JEW (2016) Sudden cardiac death (SCD) prediction based on nonlinear heart rate variability features and SCD index. Appl Soft Comput J 43:510–519

    Article  Google Scholar 

  • Gabor D (1946) Theory of communication. J Inst Electr Eng Part III Radio Commun Eng 93(26):429–457

    Google Scholar 

  • Gajic D, Djurovic Z, Gligorijevic J, Di Gennaro S, Savic-Gajic I (2015) Detection of epileptiform activity in EEG signals based on time-frequency and non-linear analysis. Front Comput Neurosci 9:1–16

    Article  Google Scholar 

  • Gammerman A, Luo Z, Vega J, Vovk V (2016) Conformal and probabilistic prediction with applications: 5th international symposium, COPA 2016 Madrid, Spain, April 20–22, 2016 proceedings. Lect Notes Computer Science (including Subser Lect Notes Artif Intell Lect Notes Bioinformatics), vol 9653, pp 185–195

  • Geronikolou SA, Albanopoulos K, Chrousos G, Cokkinos D (2017) GeNeDis 2016. 987:249–259

  • Ghosh-Dastidar S, Adeli H, Dadmehr N (2007) Mixed-band wavelet-chaos-neural network methodology for epilepsy and epileptic seizure detection. IEEE Trans Biomed Eng 54:1545–1551

    Article  PubMed  Google Scholar 

  • Glass L, Kaplan D (1993) Time series analysis of complex dynamics in physiology and medicine. Med Prog Technol 19:115

    CAS  PubMed  Google Scholar 

  • Goldberger AL, Amaral LAN, Glass L, Hausdorff JM, Ivanov PC, Mark RG, Mietus JE, Moody GB, Peng C-K, Stanley HE (2000) Components of a new research resource for complex physiologic signals. Circulation 101:e215–e220

    Article  CAS  PubMed  Google Scholar 

  • Gotman J (1982) Automatic recognition of epileptic seizures in the EEG. Electroencephalogr Clin Neurophysiol 54:530–540

    Article  CAS  PubMed  Google Scholar 

  • Gotman J, Gloor P (1976) Automatic recognition and quantification of interictal epileptic activity in the human scalp EEG. Electroencephalogr Clin Neurophysiol 41:513–529

    Article  CAS  PubMed  Google Scholar 

  • Guo L, Rivero D, Seoane JA, Pazos A (2009) Classification of EEG signals using relative wavelet energy and artificial neural networks. In: Proceedings of ACM/SIGEVO Summit on Genetic and Evolutionary Computation—GEC’09, p 177

  • Guo L, Rivero D, Pazos A (2010) Epileptic seizure detection using multiwavelet transform based approximate entropy and artificial neural networks. J Neurosci Methods 193:156–163

    Article  PubMed  Google Scholar 

  • Guo L, Rivero D, Dorado J, Munteanu CR, Pazos A (2011) Automatic feature extraction using genetic programming: an application to epileptic EEG classification. Expert Syst Appl 38:10425–10436

    Article  Google Scholar 

  • Hajian-Tilaki K (2013) Receiver operating characteristic (ROC) curve analysis for medical diagnostic test evaluation. Casp J Intern Med 4:627–635

    Google Scholar 

  • Hassan AR (2015) Automatic screening of Obstructive Sleep Apnea from single-lead Electrocardiogram. In: 2nd International conference on electrical engineering and information communication technology (iCEEiCT 2015), pp 21–23

  • Hassan AR (2016) A comparative study of various classifiers for automated sleep apnea screening based on single-lead electrocardiogram. In: ICEEE 2015—1st international conference on electrical and electronic engineering, pp 45–48

  • Hassan AR, Bhuiyan MIH (2016) Dual tree complex wavelet transform for sleep state identification from single channel electroencephalogram. In: 1st IEEE international conference on telecommunications and photonics (ICTP 2015), pp 1–5

  • Hassan AR, Bhuiyan MIH (2017a) Automated identification of sleep states from EEG signals by means of ensemble empirical mode decomposition and random under sampling boosting. Comput Methods Programs Biomed 140:201–210

    Article  PubMed  Google Scholar 

  • Hassan AR, Bhuiyan MIH (2017b) An automated method for sleep staging from EEG signals using normal inverse Gaussian parameters and adaptive boosting. Neurocomputing 219:76–87

    Article  Google Scholar 

  • Hassan AR, Haque MA (2016) Computer-aided obstructive sleep apnea screening from single-lead electrocardiogram using statistical and spectral features and bootstrap aggregating. Biocybern Biomed Eng 36:256–266

    Article  Google Scholar 

  • Hassan AR, Haque MA (2017) An expert system for automated identification of obstructive sleep apnea from single-lead ECG using random under sampling boosting. Neurocomputing 235:122–130

    Article  Google Scholar 

  • Hassan AR, Bhuiyan MIH (2016b) Automatic sleep scoring using statistical features in the EMD domain and ensemble methods. Biocybern Biomed Eng 36:248–255

    Article  Google Scholar 

  • Hassan AR, Subasi A (2016) Automatic identification of epileptic seizures from EEG signals using linear programming boosting. Comput Methods Programs Biomed 136:65–77

    Article  PubMed  Google Scholar 

  • Hassan AR, Subasi A (2017) A decision support system for automated identification of sleep stages from single-channel EEG signals. Knowl Based Syst. https://doi.org/10.1016/j.knosys.2017.05.005

    Article  Google Scholar 

  • Hassan AR, Siuly S, Zhang Y (2016) Epileptic seizure detection in EEG signals using tunable-Q factor wavelet transform and bootstrap aggregating. Comput Methods Programs Biomed 137:247–259

    Article  PubMed  Google Scholar 

  • Hayat M, Khan A (2012) Discriminating outer membrane proteins with fuzzy k-nearest neighbor algorithms based on the general form of Chou’s PseAAC. Protein Pept Lett 19:411–421

    Article  CAS  PubMed  Google Scholar 

  • Ho KKL, Moody GB, Peng C-K, Mietus JE, Larson MG, Levy D, Goldberger AL (1997) Predicting survival in heart failure case and control subjects by use of fully automated methods for deriving nonlinear and conventional indices of heart rate dynamics. Circulation 96:842–848

    Article  CAS  PubMed  Google Scholar 

  • Huang FJ, LeCun Y (2006) Large-scale learning with SVM and convolutional nets for generic object categorization. Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit 1:284–291

    Google Scholar 

  • Hussain L, Aziz W (2016) Time-frequency spatial wavelet phase coherence analysis of EEG in EC and EO during Resting state. Proc Comput Sci 95:297–302

    Article  Google Scholar 

  • Hussain L, Aziz W, Kazmi SZH, Awan IA (2014) Classification of human faces and non faces using machine learning techniques. Int J Electron Electr Eng 2:116–123

    Article  Google Scholar 

  • Hussain L, Aziz W, Khan AS, Abbasi AQ, Hassan SZ (2015) Classification of electroencephlography (EEG) alcoholic and control subjects using machine learning ensemble methods. J Multidiscip Eng Sci Technol 2:126–131

    Google Scholar 

  • Hussain L, Shafi I, Saeed S, Abbas A, Awan IA, Nadeem SA, Kazmi SZH, Shah SA (2017a) A radial base neural network approach for emotion recognition in human speech. Int J Comput Sci Netw, Secur, p 17

    Google Scholar 

  • Hussain L, Aziz W, Saeed S, Shah SA, Nadeem MSA, Awan IA, Abbas A, Majid A, Kazmi SZH (2017b) Quantifying the dynamics of electroencephalographic (EEG) signals to distinguish alcoholic and non-alcoholic subjects using an MSE based K-d tree algorithm. Biomed Eng. https://doi.org/10.1515/bmt-2017-0041

    Article  Google Scholar 

  • Hussain L, Aziz W, Alowibdi JS, Habib N, Rafique M, Saeed S, Kazmi SZH (2017c) Symbolic time series analysis of electroencephalographic (EEG) epileptic seizure and brain dynamics with eye-open and eye-closed subjects during resting states. J Physiol Anthropol 36:21

    Article  PubMed  PubMed Central  Google Scholar 

  • Iscan Z, Dokur Z, Demiralp T (2011) Classification of electroencephalogram signals with combined time and frequency features. Expert Syst Appl 38:10499–10505

    Article  Google Scholar 

  • Jaiswal AK, Banka H (2017) Local pattern transformation based feature extraction techniques for classification of epileptic EEG signals. Biomed Signal Process Control 34:81–92

    Article  Google Scholar 

  • James CJ, Eng BE (1997) Detection of epileptiform activity in the electroencephalogram using artificial neural networks

  • Kaleem M, Guergachi A, Krishnan S (2013) EEG seizure detection and epilepsy diagnosis using a novel variation of Empirical Mode Decomposition. In: Proceedings of Annual International Conference of the IEEE Engineering in Medicine and Biology Society( EMBS), pp 4314–4317

  • Kang JH, Chung YG, Kim SP (2015) An efficient detection of epileptic seizure by differentiation and spectral analysis of electroencephalograms. Comput Biol Med 66:352–356

    Article  PubMed  Google Scholar 

  • Kannathal N, Choo ML, Acharya UR, Sadasivan PK (2005) Entropies for detection of epilepsy in EEG. Comput Methods Programs Biomed 80:187–194

    Article  CAS  PubMed  Google Scholar 

  • Kaya Y, Uyar M, Tekin R, Yıldırım S (2014) 1D-local binary pattern based feature extraction for classification of epileptic EEG signals. Appl Math Comput 243:209–219

    Google Scholar 

  • Kleiger RE, Miller JP, Bigger JT, Moss AJ (1987) Decreased heart rate variability and its association with increased mortality after acute myocardial infarction. Am J Cardiol 59:258–282

    Article  Google Scholar 

  • Kuang D, Yang R, Chen X, Lao G, Wu F, Huang X, Lv R, Zhang L, Song C, Ou S (2017) Depression recognition according to heart rate variability using Bayesian Networks. J Psychiatr Res 95:282–287

    Article  PubMed  Google Scholar 

  • Lee SH, Lim JS, Kim JK, Yang J, Lee Y (2014) Classification of normal and epileptic seizure EEG signals using wavelet transform, phase-space reconstruction, and Euclidean distance. Comput Methods Programs Biomed 116:10–25

    Article  PubMed  Google Scholar 

  • Lewis GJ, Bates TC (2013) The long reach of the gene. Psychologist 26:194–198

    Google Scholar 

  • Li Y, Wee CY, Jie B, Peng Z, Shen D (2014) Sparse multivariate autoregressive modeling for mild cognitive impairment classification. Neuroinformatics 12:455–469

    Article  PubMed  PubMed Central  Google Scholar 

  • Malik M (1996) Task force of the European society of cardiology and the north American society of pacing and electrophysiology. Heart rate variability. Standards of measurement, physiological interpretation, and clinical use. Eur Heart J 17:354–381

    Article  Google Scholar 

  • Mormann F, Andrzejak RG, Elger CE, Lehnertz K (2007) Seizure prediction: the long and winding road. Brain 130:314–333

    Article  PubMed  Google Scholar 

  • Muller KR, Mika S, Ratsch G, Tsuda K, Scholkopf B (2001) An introduction to kernel-based learning algorithms. IEEE Trans Neural Netw 12:181–201

    Article  CAS  PubMed  Google Scholar 

  • Nigam VP, Graupe D (2004) A neural-network-based detection of epilepsy. Neurol Res 26:55–60

    Article  PubMed  Google Scholar 

  • Niknazar M, Mousavi SR, Vosoughi Vahdat B, Sayyah M (2013) A new framework based on recurrence quantification analysis for epileptic seizure detection. IEEE J Biomed Heal Informatics 17:572–578

    Article  CAS  Google Scholar 

  • Ocak H (2009) Automatic detection of epileptic seizures in EEG using discrete wavelet transform and approximate entropy. Expert Syst Appl 36:2027–2036

    Article  Google Scholar 

  • Orhan U, Hekim M, Ozer M (2011) EEG signals classification using the K-means clustering and a multilayer perceptron neural network model. Expert Syst Appl 38:13475–13481

    Article  Google Scholar 

  • Pan YH, Lin WY, Wang YH, Lee KT (2011) Computing multiscale entropy with orthogonal range search. J Mar Sci Technol 19:107–113

    Google Scholar 

  • Peker M, Sen B, Delen D (2016) A novel method for automated diagnosis of epilepsy using complex-valued classifiers. IEEE J Biomed Heal Informatics 20:108–118

    Article  Google Scholar 

  • Pincus SM (1991) Approximate entropy as a measure of system complexity. Mathematics 88:2297–2301

    CAS  Google Scholar 

  • Polat K, Güneş S (2007) Classification of epileptiform EEG using a hybrid system based on decision tree classifier and fast Fourier transform. Appl Math Comput 187:1017–1026

    Google Scholar 

  • Ponikowski P, Anker SD, Chua TP et al (1997) Depressed heart rate variability as an independent predictor of death in chronic congestive heart failure secondary to ischemic or idiopathic dilated cardiomyopathy. Am J Cardiol 79:1645–1650

    Article  CAS  PubMed  Google Scholar 

  • Rajendra Acharya U, Vinitha Sree S, Alvin APC, Suri JS (2012) Use of principal component analysis for automatic classification of epileptic EEG activities in wavelet framework. Expert Syst Appl 39:9072–9078

    Article  Google Scholar 

  • Rathore S, Hussain M, Aksam Iftikhar M, Jalil A (2014) Ensemble classification of colon biopsy images based on information rich hybrid features. Comput Biol Med 47:76–92

    Article  PubMed  Google Scholar 

  • Rich MW, Saini JS, Kleiger RE, Carney RM, Freedland KE (1988) Correlation of heart rate variability with clinical and angiographic variables and late mortality after coronary angiography. Am J Cardiol 62:714–717

    Article  CAS  PubMed  Google Scholar 

  • Rivero D, Fernandez-Blanco E, Dorado J, Pazos A (2011) A new signal classification technique by means of Genetic Algorithms and kNN. In: IEEE Congress on Evolutionary Computation (CEC), pp 581–586

  • Rosso OA, Blanco S, Yordanova J, Kolev V, Figliola A, Schürmann M, Başar E (2001) Wavelet entropy: a new tool for analysis of short duration brain electrical signals. J Neurosci Methods 105:65–75

    Article  CAS  PubMed  Google Scholar 

  • Rouslan A (2008) www.econstor.eu

  • Samiee K, Kovács P, Gabbouj M (2015) Epileptic seizure classification of EEG time-series using rational discrete short-time fourier transform. IEEE Trans Biomed Eng 62:541–552

    Article  PubMed  Google Scholar 

  • Schwenker F, Trentin E (2014) Pattern classification and clustering: a review of partially supervised learning approaches. Pattern Recognit Lett 37:4–14

    Article  Google Scholar 

  • Seely AJE, Macklem PT (2004) Complex systems and the technology of variability analysis. Crit Care 8:R367–R384

    Article  PubMed  PubMed Central  Google Scholar 

  • Sima CA, Inskip JA, Sheel AW, van Eeden SF, Reid WD, Camp PG (2017) The reliability of short-term measurement of heart rate variability during spontaneous breathing in people with chronic obstructive pulmonary disease. Rev Port Pneumol 23:338–342

    Google Scholar 

  • Srinivasan V, Eswaran C, Sriraam N (2007) Approximate entropy-based epileptic EEG detection using artificial neural networks. IEEE Trans Inf Technol Biomed 11:288–295

    Article  PubMed  Google Scholar 

  • Stanley Raj A, Hudson Oliver D, Srinivas Y, Viswanath J (2016) Wavelet denoising algorithm to refine noisy geoelectrical data for versatile inversion. Model Earth Syst Environ 2:36

    Article  Google Scholar 

  • Stochholm A, Mikkelsen K, Kidmose P (2016) Automatic sleep stage classification using ear-EEG. In: Proceedings of the 20th annual international conference of the IEEE engineering in medicine and biology society (EMBS 2016) pp 4751–4754

  • Subasi A (2007) EEG signal classification using wavelet feature extraction and a mixture of expert model. Expert Syst Appl 32:1084–1093

    Article  Google Scholar 

  • Subasi A (2013) Classification of EMG signals using PSO optimized SVM for diagnosis of neuromuscular disorders. Comput Biol Med 43:576–586

    Article  PubMed  Google Scholar 

  • Subasi A, Erçelebi E (2005) Classification of EEG signals using neural network and logistic regression. Comput Methods Programs Biomed 78:87–99

    Article  PubMed  Google Scholar 

  • Subasi A, Kevric J, Abdullah Canbaz M (2017) Epileptic seizure detection using hybrid machine learning methods. Neural Comput Appl 28:1–9

  • Takeda M, Ina H, Kobayashi S (1982) Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry. J Opt Soc Am 72:156

    Article  Google Scholar 

  • Tuininga YS, van Veldhuisen DJ, Brouwer J, Haaksma J, Crijns HJ, Man in’t Veld AJ, Lie KI (1994) Heart rate variability in left ventricular dysfunction and heart failure: effects and implications of drug treatment. Br Heart J 72:509–513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tzallas AT, Tsipouras MG, Fotiadis DI (2007) Automatic seizure detection based on time-frequency analysis and artificial neural networks. Comput Intell Neurosci. https://doi.org/10.1155/2007/80510

    Article  PubMed  PubMed Central  Google Scholar 

  • Tzallas AT, Tsipouras MG, Tsalikakis DG, Karvounis EC, Astrakas L, Konitsiotis S, Tzaphlidou M (2009) Automated epileptic seizure detection methods: a review study (Chap 4). Epilepsy Histol Electroencephalogr Psychol Asp 75–98

  • Tzallas AT, Tsipouras MG, Fotiadis DI, Member S (2009b) Epileptic seizure detection in EEGS using time—frequency. Analysis 13:703–710

    Google Scholar 

  • Übeyli ED (2010) Least squares support vector machine employing model-based methods coefficients for analysis of EEG signals. Expert Syst Appl 37:233–239

    Article  Google Scholar 

  • Van Hoogenhuyze D, Weinstein N, Martin GJ, Weiss JS, Schaad JW, Sahyouni XN, Fintel D, Remme WJ, Singer DH (1991) Reproducibility and relation to mean heart rate of heart rate variability in normal subjects and in patients with congestive heart failure secondary to coronary artery disease. Am J Cardiol 68:1668–1676

    Article  PubMed  Google Scholar 

  • Vapnik VN (1999) An overview of statistical learning theory. IEEE Trans Neural Netw 10:988–999

    Article  CAS  PubMed  Google Scholar 

  • Vempati S, Vedaldi A, Zisserman A, Jawahar CV (2010) Generalized RBF feature maps for efficient detection. In: Procedings of British machine vision conference, pp 2.1–2.11

  • Walters-Williams J, Li Y (2011) A New Approach to Denoising EEG Signals-Merger of Translation Invariant Wavelet and ICA. Int J Biom Bioinform 5:130–148

    Google Scholar 

  • Wang D, Miao D, Xie C (2011) Best basis-based wavelet packet entropy feature extraction and hierarchical EEG classification for epileptic detection. Expert Syst Appl 38:14314–14320

    Google Scholar 

  • Wang R, Kwong S, Wang X, Jiang Q (2015) Continuous valued attributes. IEEE Trans Cybern 45:1262–1275

    Article  PubMed  Google Scholar 

  • Wang L, Xue W, Li Y, Luo M, Huang J, Cui W, Huang C (2017) Automatic epileptic seizure detection in EEG signals using multi-domain feature extraction and nonlinear analysis. Entropy 19:1–17

    Google Scholar 

  • Wu Y, Zhou Y, Saveriades G, Agaian S, Noonan JP, Natarajan P (2013) Local Shannon entropy measure with statistical tests for image randomness. Inf Sci (Ny) 222:323–342

    Article  Google Scholar 

  • Zhang P, Gao BJ, Zhu X, Guo L (2011) Enabling fast lazy learning for data streams. In: Proceedings of IEEE international conference on data mining (ICDM), pp 932–941

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lal Hussain.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hussain, L. Detecting epileptic seizure with different feature extracting strategies using robust machine learning classification techniques by applying advance parameter optimization approach. Cogn Neurodyn 12, 271–294 (2018). https://doi.org/10.1007/s11571-018-9477-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11571-018-9477-1

Keywords

Navigation