Defects formation and spiral waves in a network of neurons in presence of electromagnetic induction

Abstract

Complex anatomical and physiological structure of an excitable tissue (e.g., cardiac tissue) in the body can represent different electrical activities through normal or abnormal behavior. Abnormalities of the excitable tissue coming from different biological reasons can lead to formation of some defects. Such defects can cause some successive waves that may end up to some additional reorganizing beating behaviors like spiral waves or target waves. In this study, formation of defects and the resulting emitted waves in an excitable tissue are investigated. We have considered a square array network of neurons with nearest-neighbor connections to describe the excitable tissue. Fundamentally, electrophysiological properties of ion currents in the body are responsible for exhibition of electrical spatiotemporal patterns. More precisely, fluctuation of accumulated ions inside and outside of cell causes variable electrical and magnetic field. Considering undeniable mutual effects of electrical field and magnetic field, we have proposed the new Hindmarsh–Rose (HR) neuronal model for the local dynamics of each individual neuron in the network. In this new neuronal model, the influence of magnetic flow on membrane potential is defined. This improved model holds more bifurcation parameters. Moreover, the dynamical behavior of the tissue is investigated in different states of quiescent, spiking, bursting and even chaotic state. The resulting spatiotemporal patterns are represented and the time series of some sampled neurons are displayed, as well.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. Bertram M, Beta C, Pollmann M, Mikhailov AS, Rotermund HH, Ertl G (2003) Pattern formation on the edge of chaos: experiments with CO oxidation on a Pt (110) surface under global delayed feedback. Phys Rev E 67:036208

    Article  Google Scholar 

  2. Beta C, Bertram M, Mikhailov AS, Rotermund HH, Ertl G (2003) Controlling turbulence in a surface chemical reaction by time-delay autosynchronization. Phys Rev E 67:046224

    CAS  Article  Google Scholar 

  3. Beta C, Moula MG, Mikhailov AS, Rotermund HH, Ertl G (2004) Excitable CO oxidation on Pt (110) under nonuniform coupling. Phys Rev Lett 93:188302

    CAS  Article  PubMed  Google Scholar 

  4. Bueno-Orovio A, Cherry EM, Fenton FH (2008) Minimal model for human ventricular action potentials in tissue. J Theor Biol 253:544–560

    Article  PubMed  Google Scholar 

  5. Chen J-X, Peng L, Ma J, Ying H-P (2014a) Liberation of a pinned spiral wave by a rotating electric pulse. Europhys Lett (EPL) 107:38001

    Article  Google Scholar 

  6. Chen J-X, Zhu J-X, Zhao Y-H, Sun W-G, Xu J-R, Ying H-P (2014b) Simulating bistable biochemical systems by means of reactive multiparticle collision dynamics. Commun Nonlinear Sci Numer Simul 19:2505–2512

    Article  Google Scholar 

  7. Cherry EM, Fenton FH (2008) Visualization of spiral and scroll waves in simulated and experimental cardiac tissue. New J Phys 10:125016

    Article  Google Scholar 

  8. Clayton R et al (2011) Models of cardiac tissue electrophysiology: progress, challenges and open questions. Prog Biophys Mol Biol 104:22–48

    CAS  Article  PubMed  Google Scholar 

  9. Davidenko JM, Pertsov AV (1992) Stationary and drifting spiral waves of excitation in isolated cardiac muscle. Nature 355:349

    CAS  Article  PubMed  Google Scholar 

  10. Fenton FH, Cherry EM, Hastings HM, Evans SJ (2002) Multiple mechanisms of spiral wave breakup in a model of cardiac electrical activity Chaos: an interdisciplinary. J Nonlinear Sci 12:852–892

    Google Scholar 

  11. Gray RA, Pertsov AM, Jalife J (1998) Correction: spatial and temporal organization during cardiac fibrillation. Nature 393:191

    CAS  Article  Google Scholar 

  12. Gu H, Pan B (2015) A four-dimensional neuronal model to describe the complex nonlinear dynamics observed in the firing patterns of a sciatic nerve chronic constriction injury model. Nonlinear Dyn 81:2107–2126

    Article  Google Scholar 

  13. Gu H, Pan B, Chen G, Duan L (2014) Biological experimental demonstration of bifurcations from bursting to spiking predicted by theoretical models. Nonlinear Dyn 78:391–407

    Article  Google Scholar 

  14. Guo S, Xu Y, Wang C, Jin W, Hobiny A, Ma J (2017) Collective response, synapse coupling and field coupling in neuronal network. Chaos Solitons Fractals 105:120–127

    Article  Google Scholar 

  15. Hildebrand M, Bär M, Eiswirth M (1995) Statistics of topological defects and spatiotemporal chaos in a reaction–diffusion system. Phys Rev Lett 75:1503

    CAS  Article  PubMed  Google Scholar 

  16. Hindmarsh J, Rose R (1982) A model of the nerve impulse using two first-order differential equations. Nature 296:162–164

    CAS  Article  PubMed  Google Scholar 

  17. Hodgkin AL, Huxley AF (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol 117:500–544

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  18. Hu B, Ma J, Tang J (2013) Selection of multiarmed spiral waves in a regular network of neurons. PLoS ONE 8:e69251

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  19. Huang X, Troy WC, Yang Q, Ma H, Laing CR, Schiff SJ, Wu J-Y (2004) Spiral waves in disinhibited mammalian neocortex. J Neurosci 24:9897–9902

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  20. Huang X, Xu W, Liang J, Takagaki K, Gao X, Wu J-Y (2010) Spiral wave dynamics in neocortex. Neuron 68:978–990

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  21. Jakubith S, Rotermund H, Engel W, Von Oertzen A, Ertl G (1990) Spatiotemporal concentration patterns in a surface reaction: propagating and standing waves, rotating spirals, and turbulence. Phys Rev Lett 65:3013

    CAS  Article  PubMed  Google Scholar 

  22. Jun M, He-Ping Y, Yong L, Shi-Rong L (2009) Development and transition of spiral wave in the coupled Hindmarsh–Rose neurons in two-dimensional space. Chin Phys B 18:98

    CAS  Article  Google Scholar 

  23. Lechleiter J, Girard S, Peralta E, Clapham D (1991) Spiral calcium wave propagation and annihilation in Xenopus laevis oocytes. Science 252:123–126

    CAS  Article  PubMed  Google Scholar 

  24. Li B-W, Deng L-Y, Zhang H (2013) Chiral symmetry breaking in a reaction–diffusion system. Phys Rev E 87:042905

    Article  Google Scholar 

  25. Li B-W, Cai M-C, Zhang H, Panfilov AV, Dierckx H (2014) Chiral selection and frequency response of spiral waves in reaction–diffusion systems under a chiral electric field. J Chem Phys 140:184901

    Article  PubMed  Google Scholar 

  26. Liu T-B, Ma J, Zhao Q, Tang J (2014) Force exerted on the spiral tip by the heterogeneity in an excitable medium. Europhys Lett (EPL) 104:58005

    Article  Google Scholar 

  27. Lv M, Ma J (2016) Multiple modes of electrical activities in a new neuron model under electromagnetic radiation. Neurocomputing 205:375–381

    Article  Google Scholar 

  28. Lv M, Wang C, Ren G, Ma J, Song X (2016) Model of electrical activity in a neuron under magnetic flow effect. Nonlinear Dyn 85:1–12

    Article  Google Scholar 

  29. Ma J, Tang J (2015) A review for dynamics of collective behaviors of network of neurons. Sci China Technol Sci 58:2038–2045

    CAS  Article  Google Scholar 

  30. Ma J, Jia Y, Wang C-N, Li S-R (2008) The instability of the spiral wave induced by the deformation of elastic excitable media. J Phys A Math Theor 41:385105

    Article  Google Scholar 

  31. Ma J, Tang J, Zhang A, Jia Y (2010) Robustness and breakup of the spiral wave in a two-dimensional lattice network of neurons. Sci China Phys Mech Astron 53:672–679

    Article  Google Scholar 

  32. Ma J, Jia Y, Wang C-N, Jin W-Y (2011) Transition of spiral wave in a model of two-dimensional arrays of Hindmarsh–Rose neurons. Int J Mod Phys B 25:1653–1670

    Article  Google Scholar 

  33. Ma J, Huang L, Tang J, Ying H-P, Jin W-Y (2012) Spiral wave death, breakup induced by ion channel poisoning on regular Hodgkin-Huxley neuronal networks. Commun Nonlinear Sci Numer Simul 17:4281–4293

    Article  Google Scholar 

  34. Ma J, Hu B, Wang C, Jin W (2013) Simulating the formation of spiral wave in the neuronal system. Nonlinear Dyn 73:73–83

    Article  Google Scholar 

  35. Ma J, Wu F, Wang C (2016a) Synchronization behaviors of coupled neurons under electromagnetic radiation. Int J Mod Phys B 31:1650251

    Article  Google Scholar 

  36. Ma J, Xu Y, Tang J, Wang C (2016b) Defects formation and wave emitting from defects in excitable media. Commun Nonlinear Sci Numer Simul 34:55–65

    Article  Google Scholar 

  37. Ma J, Wu F, Hayat T, Zhou P, Tang J (2017) Electromagnetic induction and radiation-induced abnormality of wave propagation in excitable media. Phys A Stat Mech Appl 486:508–516. https://doi.org/10.1016/j.physa.2017.05.075

    Article  Google Scholar 

  38. Moujahid A, D’Anjou A, Torrealdea F, Torrealdea FJ (2010) Energy cost reduction in the synchronization of a pair of nonidentical coupled Hindmarsh–Rose neurons. In: Trends in practical applications of agents and multiagent systems. Springer, Berlin, pp 657–664

  39. Moujahid A, d’Anjou A, Torrealdea F, Torrealdea F (2011) Efficient synchronization of structurally adaptive coupled Hindmarsh–Rose neurons. Chaos Solitons Fractals 44:929–933

    Article  Google Scholar 

  40. Pan J-t, Cai M-c, Li B-w, Zhang H (2013) Chiralities of spiral waves and their transitions. Phys Rev E 87:062907

    Article  Google Scholar 

  41. Pan D-B, Gao X, Feng X, Pan J-T, Zhang H (2016) Removal of pinned scroll waves in cardiac tissues by electric fields in a generic model of three-dimensional excitable media. Sci Rep 6:21876

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  42. Pertsov AM, Davidenko JM, Salomonsz R, Baxter WT, Jalife J (1993) Spiral waves of excitation underlie reentrant activity in isolated cardiac muscle. Circ Res 72:631–650

    CAS  Article  PubMed  Google Scholar 

  43. Qin H, Ma J, Wang C, Chu R (2014) Autapse-induced target wave, spiral wave in regular network of neurons. Sci China Phys Mech Astron 57:1918–1926

    Article  Google Scholar 

  44. Qin H, Wu Y, Wang C, Ma J (2015) Emitting waves from defects in network with autapses. Commun Nonlinear Sci Numer Simul 23:164–174

    Article  Google Scholar 

  45. Rech PC (2012) Dynamics in the parameter space of a neuron model. Chin Phys Lett 29:060506

    Article  Google Scholar 

  46. Schiff SJ, Huang X, Wu J-Y (2007) Dynamical evolution of spatiotemporal patterns in mammalian middle cortex. BMC Neurosci 8:P61

    Article  PubMed Central  Google Scholar 

  47. Torrealdea FJ, Sarasola C, d’Anjou A, Moujahid A, de Mendizábal NV (2009) Energy efficiency of information transmission by electrically coupled neurons. Biosystems 97:60–71

    Article  PubMed  Google Scholar 

  48. Van Der Heide T et al (2010) Spatial self-organized patterning in seagrasses along a depth gradient of an intertidal ecosystem. Ecology 91:362–369

    Article  PubMed  Google Scholar 

  49. Winfree AT (1972) Spiral waves of chemical activity. Science 175:634–636

    CAS  Article  PubMed  Google Scholar 

  50. Winfree AT (1987) When time breaks down: the three-dimensional dynamics of electrochemical waves and cardiac arrhythmias, vol 14. Princeton University Press, Princeton

    Google Scholar 

  51. Winfree AT (2001) The geometry of biological time, vol 12. Springer, Berlin

    Google Scholar 

  52. Wu J, Xu Y, Ma J (2017) Lévy noise improves the electrical activity in a neuron under electromagnetic radiation. PLoS ONE 12:e0174330

    Article  PubMed  PubMed Central  Google Scholar 

  53. Xin-Lin S, Wu-Yin J, Jun M (2015) Energy dependence on the electric activities of a neuron. Chin Phys B 24:128710

    Article  Google Scholar 

  54. Xu Y, Jin W, Ma J (2015) Emergence and robustness of target waves in a neuronal network. Int J Mod Phys B 29:1550164

    Article  Google Scholar 

  55. Xu Y, Ying H, Jia Y, Ma J, Hayat T (2017) Autaptic regulation of electrical activities in neuron under electromagnetic induction. Sci Rep 7:43452

    Article  PubMed  PubMed Central  Google Scholar 

  56. Zemlin CW, Pertsov AM (2012) Anchoring of drifting spiral and scroll waves to impermeable inclusions in excitable media. Phys Rev Lett 109:038303

    Article  PubMed  Google Scholar 

  57. Zhang D, Zhang Q, Zhu X (2015) Exploring a type of central pattern generator based on Hindmarsh–Rose model: from theory to application. Int J Neural Syst 25:1450028

    Article  PubMed  Google Scholar 

  58. Zhao Y-H, Lou Q, Chen J-X, Sun W-G, Ma J, Ying H-P (2013) Emitting waves from heterogeneity by a rotating electric field chaos: an interdisciplinary. J Nonlinear Sci 23:033141

    Google Scholar 

Download references

Acknowledgements

Sajad Jafari was supported by Iran National Science Foundation (No. 96000815). The authors would like to thank Dr. Fatemeh Hadaeghi for help and comments which enhanced the quality of this paper.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Sajad Jafari.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rostami, Z., Jafari, S. Defects formation and spiral waves in a network of neurons in presence of electromagnetic induction. Cogn Neurodyn 12, 235–254 (2018). https://doi.org/10.1007/s11571-017-9472-y

Download citation

Keywords

  • Neuronal network
  • Pattern formation
  • Spiral wave
  • Magnetic flow
  • Electromagnetic induction