Cognitive Neurodynamics

, Volume 12, Issue 2, pp 211–223 | Cite as

Mesoscopic neuron population modeling of normal/epileptic brain dynamics

Research Article


Simulations of EEG data provide the understanding of how the limbic system exhibits normal and abnormal states of the electrical activity of the brain. While brain activity exhibits a type of homeostasis of excitatory and inhibitory mesoscopic neuron behavior, abnormal neural firings found in the seizure state exhibits brain instability due to runaway oscillatory entrained neural behavior. We utilize a model of mesoscopic brain activity, the KIV model, where each network represents the areas of the limbic system, i.e., hippocampus, sensory cortex, and the amygdala. Our model initially demonstrates oscillatory entrained neural behavior as the epileptogenesis, and then by increasing the external weights that join the three networks that represent the areas of the limbic system, seizure activity entrains the entire system. By introducing an external signal into the model, simulating external electrical titration therapy, the modeled seizure behavior can be ‘rebalanced’ back to its normal state.


Epileptogenesis Limbic system Power spectral analysis Phase diagram Autocorrelation Chaotic attractors Limit cycles 


  1. Bertram E (2007) The relevance of kindling for human epilepsy. Epilepsia 48(2):65–74CrossRefPubMedGoogle Scholar
  2. Chakravarthy N, Sabesan S, Iasemidis LD, Tsakalis K (2007) Controlling synchronization in a neuron-level population model. Int J Neural Syst IJNS 17(2):123–138CrossRefGoogle Scholar
  3. Chang HJ, Freeman WJ, Burke BC (1998) Optimization of olfactory model in software to give 1/f power spectra reveals numerical instabilities in solution governed by aperiodic (chaotic) attractor. Neural Netw 11:449–466CrossRefPubMedGoogle Scholar
  4. Chavez M, Le Van Quyen M, Navarro V, Baulac M, Martinerie J (2003) Spatio-temporal dynamics prior to neocortical seizures: amplitude versus phase couplings. IEEE Trans Biomed Eng 50(5):571–583CrossRefPubMedGoogle Scholar
  5. Faul S, Boylan G (2005) An evaluation of automated neonatal seizure detection methods. Clin Neurophysiol 116(7):1533–1541CrossRefPubMedGoogle Scholar
  6. Freeman WJ (1962) Alterations in prepyriform evoked potential in relation to stimulus intensity. Exp Neurol 6:70–84CrossRefPubMedGoogle Scholar
  7. Freeman WJ (1972) Waves, pulses and the theory of neural masses. Progr Theor Biol 2:87–165CrossRefGoogle Scholar
  8. Freeman WJ (1975) Mass action in the nervous system. Academic Press, New YorkGoogle Scholar
  9. Freeman WJ (1986) Petit mal seizure spikes in olfactory bulb and cortex caused by runaway inhibition after exhaustion of excitation. Brain Res Rev 11:259–284CrossRefGoogle Scholar
  10. Freeman WJ (2000) How brains make up their minds. Columbia University Press, New YorkGoogle Scholar
  11. Freeman WJ (2004) Origin, structure, and role of background EEG activity. Part 2 amplitude. Clin Neurophysiol 115:2089–2107CrossRefPubMedGoogle Scholar
  12. Freeman WJ (2006) Origin, structure, and role of background EEG activity. Part 4 neural frame simulation. Neurophysiology 117:572–589CrossRefGoogle Scholar
  13. Freeman WJ, Zhai J (2009) Simulated power spectral density (PSD) of background electrocorticogram (ECoG). Cognit Neurodyn 3(1):97–103CrossRefGoogle Scholar
  14. Freeman WJ, Chang H, Burke B, Rose P, Badler J (1997) Taming chaos: stabilizing aperiodic attractors by noise. IEEE Trans Circuits Syst 44:987–996CrossRefGoogle Scholar
  15. Freeman WJ, Holmes MD, West GA, Vanhatalo S (2006) Dynamics of human neocortex that optimizes its stability and flexibility. Int J Intell Syst 21:1–21CrossRefGoogle Scholar
  16. Good LB, Sabesan S, Marsh ST, Tsakalis K, Treiman D, Iasemidis L (2009) Control of synchronization of brain dynamics leads to control of epileptic seizures in rodents. Int J Neural Syst 19(3):173–196CrossRefPubMedPubMedCentralGoogle Scholar
  17. Hodgkin AL, Huxley AF (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol 117(4):500–544CrossRefPubMedPubMedCentralGoogle Scholar
  18. Ilin R, Kozma R (2006) Stability of coupled excitatory-inhibitory neural populations & application to control multistable systems. Phys Lett A 360:66–83CrossRefGoogle Scholar
  19. Jensen HJ (1998) Self-organized criticality: emergent complex behavior in physical and biological systems. Cambridge University Press, New YorkCrossRefGoogle Scholar
  20. Karceski S (2007) Electrical stimulation devices in the treatment of epilepsy. Acta Neurochir Suppl 97(2):247–259CrossRefPubMedGoogle Scholar
  21. Kerrigan JF, Litt B, Fisher RS, Crantoun S, French JA, Blum DE, Dichter M, Shetter A, Baltuch G, Jaggi J, Krone S, Brodie MA, Rise M, Graves N (2004) Electrical stimulation of the anterior nucleus of the thalamus for the treatment of intractable epilepsy. Epilepsia 45(4):346–354CrossRefPubMedGoogle Scholar
  22. Kozma R (2003) On the constructive role of noise in stabilizing itinerant trajectories. Chaos Spec Issue Chaotic Itiner 13(3):1078–1090Google Scholar
  23. Kozma R, Freeman WJ (2001) Chaotic resonance—method and applications for robust classification of noisy and variable patterns. Int J Bifurc Chaos 11:1607–1629CrossRefGoogle Scholar
  24. Kozma R, Freeman WJ, Erdi P (2003) The KIV model—nonlinear spatio-temporal dynamics of the primordial vertebrate forebrain. Neurocomputing 52–54:819–826CrossRefGoogle Scholar
  25. Kozma R, Aghazarian H, Huntsberger T, Tunstel E, Freeman WJ (2007) Computational aspects of cognition and consciousness in intelligent devices. IEEE Comput Intell Mag 2(3):53–64CrossRefGoogle Scholar
  26. Lesser RP, Lee HW, Webber WR, Prince B, Crone NE, Miglioretti DL (2008) Short-term variations in response distribution to cortical stimulation. Brain 131(6):1528–1539CrossRefPubMedPubMedCentralGoogle Scholar
  27. Linster C, Gervais R (1996) Investigation of the role of interneurons and their modulation by centrifugal fibers in a neural model of the olfactory bulb. J Comput Neurosci 3:225–246CrossRefPubMedGoogle Scholar
  28. Liu A, Hahn J, Heldt G, Coen R (1992) Detection of neonatal seizures through computerized EEG analysis. Clin Neurophysiol 82:30–37CrossRefGoogle Scholar
  29. Marrosu F, Santoni F, Pulighedda M (2003) Correlaton between GABA(A) receptor density and vagus nerve stimulation in individuals with drug resistant partial epilepsy. Epilepsy Res 55:59–70CrossRefPubMedGoogle Scholar
  30. Myers MH, Kozma R, Freeman WJ (2008) Studies in synchronization in KIV model. In: Wang R et al (eds) Advances in cognitive neurodynamics, ICCN07, vol 2. Springer, Berlin, pp 207–211Google Scholar
  31. Osorio I, Frei MG, Sunderam S, Giftakis J, Bhavaraju NC, Schaffner SF, Wilkinson SB (2005) Automated seizure abatement in humans using electrical stimulation. Ann Neurol 57:258–268CrossRefPubMedGoogle Scholar
  32. Richardson KA, Gluckman BJ, Weinstein SL, Glosch CE, Moon JB, Gwinn RP, Gale K, Schiff SJ (2003) In vivo modulation of epileptiform activity with radial hippocampal electric fields. Epilepsia 44:768–777CrossRefPubMedGoogle Scholar
  33. Sunderam S, Gluckman B, Reato D, Bikson M (2010) Toward rational design of electrical stimulation strategies for epilepsy control. Epilepsy Behav 17(1):6–22CrossRefPubMedGoogle Scholar
  34. Takeshita S, Sato YS, Bahar S (2007) Transitions between multistable states as a model of epileptic seizure dynamics. Phys Rev E 75:051925CrossRefGoogle Scholar
  35. Tsakalis K, Chakravarthy N, Iasemidis L (2005) Control of epileptic seizures: models of chaotic oscillator networks. In: Proceedings of the 44th IEEE conference on decision and control, and the european control conference, Seville, Spain, Dec 2005Google Scholar
  36. Varela F, Lachaux J-P, Rodriguez E, Martinerie J (2001) The brain-web: phase synchronization and large-scale integration. Nat Rev Neurosci 2:229–239CrossRefPubMedGoogle Scholar
  37. Velazquez JL, Cortez MA, Carter Snead O III, Wennberg R (2003) Dynamical regimes underlying epileptiform events: role of instabilities and bifurcations in brain activity. Physica D 186:205–220CrossRefGoogle Scholar
  38. Yang HJ, Peng KR, Hu SJ, Liu Y (2007) Inhibiting effect of vagal nerve stimulation to seizures in epileptic process of rats. Neurosci Bull 23(6):336–340CrossRefPubMedGoogle Scholar
  39. Zagon A, Kemeny AA (2000) Slow hyperpolarization in cortical neurons: a possible mechanism behind vagus nerve stimulation therapy for refractory epilepsy. Epilepsia 41(11):1382–1389CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2017

Authors and Affiliations

  1. 1.Department of Anatomy and NeurobiologyUniversity of Tennessee Health Science CenterMemphisUSA
  2. 2.Department of MathematicsUniversity of MemphisMemphisUSA

Personalised recommendations