Cognitive Neurodynamics

, Volume 12, Issue 2, pp 141–156 | Cite as

A review on EEG-based methods for screening and diagnosing alcohol use disorder

  • Wajid Mumtaz
  • Pham Lam Vuong
  • Aamir Saeed Malik
  • Rusdi Bin Abd Rashid
Review Paper


The screening test for alcohol use disorder (AUD) patients has been of subjective nature and could be misleading in particular cases such as a misreporting the actual quantity of alcohol intake. Although the neuroimaging modality such as electroencephalography (EEG) has shown promising research results in achieving objectivity during the screening and diagnosis of AUD patients. However, the translation of these findings for clinical applications has been largely understudied and hence less clear. This study advocates the use of EEG as a diagnostic and screening tool for AUD patients that may help the clinicians during clinical decision making. In this context, a comprehensive review on EEG-based methods is provided including related electrophysiological techniques reported in the literature. More specifically, the EEG abnormalities associated with the conditions of AUD patients are summarized. The aim is to explore the potentials of objective techniques involving quantities/features derived from resting EEG, event-related potentials or event-related oscillations data.


Alcohol use disorder EEG REEG ERP ERO Alcoholics screening P300 intensities Coherence Phase delay 



This research work is supported by the HICoE grant for CISIR (0153CA-005), Ministry of Education (MOE), Malaysia.


  1. Acharya UR, Sree SV, Chattopadhyay S, Suri JS (2012) Automated diagnosis of normal and alcoholic EEG signals. Int J Neural Syst 22(03):1250011CrossRefPubMedGoogle Scholar
  2. Acharya UR, Bhat S, Adeli H, Adeli A (2014) Computer-aided diagnosis of alcoholism-related EEG signals. Epilepsy Behav 41:257–263CrossRefPubMedGoogle Scholar
  3. Addolorato G, Capristo E, Greco A, Caputo F, Stefanini G, Gasbarrini G (1998) Three months of abstinence from alcohol normalizes energy expenditure and substrate oxidation in alcoholics: a longitudinal study. Am J Gastroenterol 93(12):2476–2481CrossRefPubMedGoogle Scholar
  4. Anderson NE, Baldridge RM, Stanford MS (2011) P3a amplitude predicts successful treatment program completion in substance-dependent individuals. Subst Use Misuse 46(5):669–677CrossRefPubMedGoogle Scholar
  5. Andrew C, Fein G (2010a) Event-related oscillations versus event-related potentials in a P300 task as biomarkers for alcoholism. Alcohol Clin Exp Res 34(4):669–680CrossRefPubMedPubMedCentralGoogle Scholar
  6. Andrew C, Fein G (2010b) Induced theta oscillations as biomarkers for alcoholism. Clin Neurophysiol 121(3):350–358CrossRefPubMedPubMedCentralGoogle Scholar
  7. APA (2013) Diagnostic and statistical manual of mental disorders (DSM-5®), vol 5. APA, ArlingtonGoogle Scholar
  8. Barry RJ, Clarke AR, Hajos M, McCarthy R, Selikowitz M, Dupuy FE (2010) Resting-state EEG gamma activity in children with attention-deficit/hyperactivity disorder. Clin Neurophysiol 121(11):1871–1877CrossRefPubMedGoogle Scholar
  9. Bauer LO (2001) Predicting relapse to alcohol and drug abuse via quantitative electroencephalography. Neuropsychopharmacology 25(3):332–340CrossRefPubMedGoogle Scholar
  10. Bucholz KK, Cadoret R, Cloninger CR, Dinwiddie SH, Hesselbrock V, Nurnberger J Jr, Schuckit MA (1994) A new, semi-structured psychiatric interview for use in genetic linkage studies: a report on the reliability of the SSAGA. J Stud Alcohol 55(2):149–158CrossRefPubMedGoogle Scholar
  11. Campanella S, Petit G, Maurage P, Kornreich C, Verbanck P, Noël X (2009) Chronic alcoholism: insights from neurophysiology. Neurophysiol Clin 39(4):191–207CrossRefPubMedGoogle Scholar
  12. Costa L, Bauer L, Kuperman S, Porjesz B, O’Connor S, Hesselbrock V, Begleiter H (2000) Frontal P300 decrements, alcohol dependence, and antisocial personality disorder. Biol Psychiatry 47(12):1064–1071CrossRefPubMedGoogle Scholar
  13. Coutin-Churchman P, Moreno R, Añez Y, Vergara F (2006) Clinical correlates of quantitative EEG alterations in alcoholic patients. Clin Neurophysiol 117(4):740–751CrossRefPubMedGoogle Scholar
  14. Crego A, Holguín SR, Parada M, Mota N, Corral M, Cadaveira F (2009) Binge drinking affects attentional and visual working memory processing in young university students. Alcohol Clin Exp Res 33(11):1870–1879CrossRefPubMedGoogle Scholar
  15. Curtin JJ, Fairchild BA (2003) Alcohol and cognitive control: implications for regulation of behavior during response conflict. J Abnorm Psychol 112(3):424CrossRefPubMedGoogle Scholar
  16. de Bruin EA, Bijl S, Stam CJ, Böcker KB, Kenemans JL, Verbaten MN (2004) Abnormal EEG synchronisation in heavily drinking students. Clin Neurophysiol 115(9):2048–2055CrossRefPubMedGoogle Scholar
  17. de Bruin EA, Stam CJ, Bijl S, Verbaten MN, Kenemans JL (2006) Moderate-to-heavy alcohol intake is associated with differences in synchronization of brain activity during rest and mental rehearsal. Int J Psychophysiol 60(3):304–314CrossRefPubMedGoogle Scholar
  18. de Souza ACS, Yehia HC, Sato M-A, Callan D (2013) Brain activity underlying auditory perceptual learning during short period training: simultaneous fMRI and EEG recording. BMC Neurosci 14(1):1CrossRefGoogle Scholar
  19. Duffy FH, Bartels PH, Burchfiel JL (1981) Significance probability mapping: an aid in the topographic analysis of brain electrical activity. Electroencephalogr Clin Neurophysiol 51(5):455–462CrossRefPubMedGoogle Scholar
  20. Ehlers CL, Phillips E (2007) Association of EEG alpha variants and alpha power with alcohol dependence in Mexican American young adults. Alcohol 41(1):13–20CrossRefPubMedPubMedCentralGoogle Scholar
  21. Ehlers CL, Phillips E, Schuckit MA (2004) EEG alpha variants and alpha power in Hispanic American and white non-Hispanic American young adults with a family history of alcohol dependence. Alcohol 33(2):99–106CrossRefPubMedGoogle Scholar
  22. Ek Z, Akg A, Bozkurt MR (2013) The classificaton of EEG signals recorded in drunk and non-drunk people. Int J Comput Appl 68(10):40–44Google Scholar
  23. Faust O, Yanti R, Yu W (2013a) Automated detection of alcohol related changes in electroencephalograph signals. J Med Imaging Health Inform 3(2):333–339CrossRefGoogle Scholar
  24. Faust O, Yu W, Kadri NA (2013b) Computer-based identification of normal and alcoholic eeg signals using wavelet packets and energy measures. J Mech Med Biol 13(03):1350033CrossRefGoogle Scholar
  25. Fisher RA (1936) The use of multiple measurements in taxonomic problems. Ann Eugen 7(2):179–188CrossRefGoogle Scholar
  26. Freeman WM, Vrana KE (2010) future prospects for biomarkers of alcohol consumption and alcohol-induced disorders. Alcohol Clin Exp Res 34(6):946–954CrossRefPubMedPubMedCentralGoogle Scholar
  27. Gilmore CS, Fein G (2012) Theta event-related synchronization is a biomarker for a morbid effect of alcoholism on the brain that may partially resolve with extended abstinence. Brain Behav 2(6):796–805CrossRefPubMedPubMedCentralGoogle Scholar
  28. Glenn SW, Sinha R, Parsons OA (1993) Electrophysiological indices predict resumption of drinking in sober alcoholics. Alcohol 10(2):89–95CrossRefPubMedGoogle Scholar
  29. Guntaka R, Tcheslavski GV (2013) On the EEG-based automated detection of alcohol dependence. Int J Bioautom 17:167–176Google Scholar
  30. Hada M, Porjesz B, Begleiter H, Polich J (2000) Auditory P3a assessment of male alcoholics. Biol Psychiatry 48(4):276–286CrossRefPubMedGoogle Scholar
  31. Heinz A, Beck A, Grüsser SM, Grace AA, Wrase J (2009) Identifying the neural circuitry of alcohol craving and relapse vulnerability. Addict Biol 14(1):108–118CrossRefPubMedGoogle Scholar
  32. Iwasaki M, Kellinghaus C, Alexopoulos AV, Burgess RC, Kumar AN, Han YH, Leigh RJ (2005) Effects of eyelid closure, blinks, and eye movements on the electroencephalogram. Clin Neurophysiol 116(4):878–885CrossRefPubMedGoogle Scholar
  33. Jones KA, Porjesz B, Chorlian D, Rangaswamy M, Kamarajan C, Padmanabhapillai A, Begleiter H (2006) S-transform time-frequency analysis of P300 reveals deficits in individuals diagnosed with alcoholism. Clin Neurophysiol 117(10):2128–2143CrossRefPubMedGoogle Scholar
  34. Kamarajan C, Porjesz B, Jones KA, Choi K, Chorlian DB, Padmanabhapillai A, Begleiter H (2004) The role of brain oscillations as functional correlates of cognitive systems: a study of frontal inhibitory control in alcoholism. Int J Psychophysiol 51(2):155–180CrossRefPubMedPubMedCentralGoogle Scholar
  35. Kamarajan C, Porjesz B, Jones KA, Choi K, Chorlian DB, Padmanabhapillai A, Begleiter H (2005) Alcoholism is a disinhibitory disorder: neurophysiological evidence from a Go/No-Go task. Biol Psychol 69(3):353–373CrossRefPubMedGoogle Scholar
  36. Kamarajan C, Porjesz B, Jones K, Chorlian D, Padmanabhapillai A, Rangaswamy M, Begleiter H (2006) Event-related oscillations in offspring of alcoholics: neurocognitive disinhibition as a risk for alcoholism. Biol Psychiatry 59(7):625–634CrossRefPubMedGoogle Scholar
  37. Kanna PS, Palaniappan R, Ravi K (2005) Classification of alcohol abusers: an intelligent approach. Paper presented at the third international conference on information technology and applications, 2005. ICITA 2005Google Scholar
  38. Klimesch W (1999) EEG alpha and theta oscillations reflect cognitive and memory performance: a review and analysis. Brain Res Rev 29(2):169–195CrossRefPubMedGoogle Scholar
  39. Kousarrizi MN, Ghanbari AA, Gharaviri A, Teshnehlab M, Aliyari M (2009) Classification of alcoholics and non-alcoholics via EEG using SVM and neural networks. Paper presented at the 3rd international conference on bioinformatics and biomedical engineering, 2009. ICBBE 2009Google Scholar
  40. Krause CM, Sillanmäki L, Koivisto M, Saarela C, Häggqvist A, Laine M, Hämäläinen H (2000) The effects of memory load on event-related EEG desynchronization and synchronization. Clin Neurophysiol 111(11):2071–2078CrossRefPubMedGoogle Scholar
  41. Krause CM, Aromäki A, Sillanmäki L, Åström T, Alanko K, Salonen E, Peltola O (2002) Alcohol-induced alterations in ERD/ERS during an auditory memory task. Alcohol 26(3):145–153CrossRefPubMedGoogle Scholar
  42. Kuncheva LI, Rodríguez JJ (2013) Interval feature extraction for classification of event-related potentials (ERP) in EEG data analysis. Prog Artif Intell 2(1):65–72CrossRefGoogle Scholar
  43. Lopes CD, Mainardi JO, Zaro MA, Susin AA (2004) Classification of event-related potentials in individuals at risk for alcoholism using wavelet transform and artificial neural network. Paper presented at the proceedings of the 2004 IEEE symposium on computational intelligence in bioinformatics and computational biology, 2004. CIBCB’04Google Scholar
  44. Lopes CD, Schuler E, Engel P, Susin AA (2005). ERP signal identification of Individuals at risk for alcoholism using learning vector quantization network. Paper presented at the proceedings of the 2005 IEEE symposium on computational intelligence in bioinformatics and computational biology, 2005. CIBCB’05Google Scholar
  45. Marco J, Fuentemilla L, Grau C (2005) Auditory sensory gating deficit in abstinent chronic alcoholics. Neurosci Lett 375(3):174–177CrossRefPubMedGoogle Scholar
  46. Marinkovic K, Halgren E, Maltzman I (2001) Arousal-related P3a to novel auditory stimuli is abolished by a moderately low alcohol dose. Alcohol Alcohol 36(6):529–539CrossRefPubMedPubMedCentralGoogle Scholar
  47. Maurage P, Campanella S, Philippot P, de Timary P, Constant E, Gauthier S, Noël X (2008) Alcoholism leads to early perceptive alterations, independently of comorbid depressed state: an ERP study. Neurophysiol Clin 38(2):83–97CrossRefPubMedGoogle Scholar
  48. Michael A, Mirza K, Mukundan C, Channabasavanna S (1993) Interhemispheric electroencephalographic coherence as a biological marker in alcoholism. Acta Psychiatr Scand 87(3):213–217CrossRefPubMedGoogle Scholar
  49. Miller PM, Ornstein SM, Nietert PJ, Anton RF (2004) Self-report and biomarker alcohol screening by primary care physicians: the need to translate research into guidelines and practice. Alcohol Alcohol 39(4):325–328CrossRefPubMedGoogle Scholar
  50. Miller PM, Spies C, Neumann T, Javors MA, Hoyumpa A, Roache J, Anton RF (2006) Alcohol biomarker screening in medical and surgical settings. Alcohol Clin Exp Res 30(2):185–193CrossRefPubMedGoogle Scholar
  51. Moss HB, Chen CM, Yi H-Y (2007) Subtypes of alcohol dependence in a nationally representative sample. Drug Alcohol Depend 91(2):149–158CrossRefPubMedPubMedCentralGoogle Scholar
  52. Mumtaz W, Vuong PL, Xia L, Malik AS, Rashid RBA (2016) Automatic diagnosis of alcohol use disorder using EEG features. Knowl Based Syst 105:48–59CrossRefGoogle Scholar
  53. Mumtaz W, Vuong PL, Xia L, Malik AS, Rashid RBA (2017) An EEG-based machine learning method to screen alcohol use disorder. Cogn Neurodyn 11(2):161–171CrossRefPubMedGoogle Scholar
  54. Ng EP, Lim T-C, Chattopadhyay S, Bairy M (2012) Automated identification of epileptic and alcoholic EEG signals using recurrence quantification analysis. J Mech Med Biol 12(05):1240028CrossRefGoogle Scholar
  55. NIAAA (2012) Alcohol use disorder. Retrieved from Accessed 19 May 2016
  56. Nyhus E, Curran T (2010) Functional role of gamma and theta oscillations in episodic memory. Neurosci Biobehav Rev 34(7):1023–1035CrossRefPubMedPubMedCentralGoogle Scholar
  57. Ong K-M, Thung K-H, Wee C-Y, Paramesranle R (2005) Selection of a subset of EEG channels using PCA to classify alcoholics and non-alcoholics. Paper presented at the proceedings of the 2005 IEEE engineering in medicine and biology 27th annual conference (Shanghai, China, 2005)Google Scholar
  58. Padmanabhapillai A, Porjesz B, Ranganathan M, Jones KA, Chorlian DB, Tang Y, Begleiter H (2006) Suppression of early evoked gamma band response in male alcoholics during a visual oddball task. Int J Psychophysiol 60(1):15–26CrossRefPubMedGoogle Scholar
  59. Palaniappan R (2005) Discrimination of alcoholic subjects using second order autoregressive modelling of brain signals evoked during visual stimulus perception. Paper presented at the IEC (Prague)Google Scholar
  60. Palaniappan R (2006) Improved automated classification of alcoholics and non-alcoholics. Int J Inf Technol 2:182–186Google Scholar
  61. Palaniappan R, Raveendran P, Omatu S (2002) VEP optimal channel selection using genetic algorithm for neural network classification of alcoholics. IEEE Trans Neural Netw 13(2):486–491CrossRefPubMedGoogle Scholar
  62. Pandey A, Kamarajan C, Tang Y, Chorlian D, Roopesh B, Manz N, Porjesz B (2012) Neurocognitive deficits in male alcoholics: an ERP/sLORETA analysis of the N2 component in an equal probability Go/NoGo task. Biol Psychol 89(1):170–182CrossRefPubMedGoogle Scholar
  63. Parsons OA, Nixon SJ (1998) Cognitive functioning in sober social drinkers: a review of the research since 1986. J Stud Alcohol 59(2):180–190CrossRefPubMedGoogle Scholar
  64. Parvaz MA, Alia-Klein N, Woicik PA, Volkow ND, Goldstein RZ (2011) Neuroimaging for drug addiction and related behaviors. Rev Neurosci 22(6):609–624CrossRefPubMedPubMedCentralGoogle Scholar
  65. Pfefferbaum A, Ford JM, White PM, Mathalon D (1991) Event-Related Potentials in Alcoholic Men: P3 Amplitude Reflects Family History But Not Alcohol Consumption. Alcohol Clin Exp Res 15(5):839–850CrossRefPubMedGoogle Scholar
  66. Popham RE, Schmidt W (1981) Words and deeds: the validity of self-report data on alcohol consumption. J Stud Alcohol 42(3):355–358CrossRefPubMedGoogle Scholar
  67. Porjesz B, Begleiter H (1985) Human brain electrophysiology and alcoholism. In: Tarter RE, van Thiel DH (eds) Alcohol and the brain. Springer, Berlin, pp 139–182CrossRefGoogle Scholar
  68. Porjesz B, Rangaswamy M, Kamarajan C, Jones KA, Padmanabhapillai A, Begleiter H (2005) The utility of neurophysiological markers in the study of alcoholism. Clin Neurophysiol 116(5):993–1018CrossRefPubMedGoogle Scholar
  69. Rangaswamy M, Porjesz B (2008) From event-related potential to oscillations: genetic diathesis in brain (dys) function and alcohol dependence. Alcohol Res Health 31(3):238–243PubMedPubMedCentralGoogle Scholar
  70. Rangaswamy M, Porjesz B, Chorlian DB, Wang K, Jones KA, Bauer LO, Reich T (2002) Beta power in the EEG of alcoholics. Biol Psychiatry 52(8):831–842CrossRefPubMedGoogle Scholar
  71. Rangaswamy M, Porjesz B, Chorlian DB, Choi K, Jones KA, Wang K, Reich T (2003) Theta power in the EEG of alcoholics. Alcohol Clin Exp Res 27(4):607–615CrossRefPubMedGoogle Scholar
  72. Rangaswamy M, Jones KA, Porjesz B, Chorlian DB, Padmanabhapillai A, Kamarajan C, Bauer LO (2007) Delta and theta oscillations as risk markers in adolescent offspring of alcoholics. Int J Psychophysiol 63(1):3–15CrossRefPubMedGoogle Scholar
  73. Ritsner MS (2009) The handbook of neuropsychiatric biomarkers, endophenotypes and genes: volume I: neuropsychological endophenotypes and biomarkers, vol 1. Springer, BerlinCrossRefGoogle Scholar
  74. Saletu B, Anderer P, Kinsperger K, Grünberger J (1987) Topographic brain mapping of EEG in neuropsychopharmacology—part II. Clinical applications (pharmaco EEG imaging). Methods Find Exp Clin Pharmacol 9(6):385–408PubMedGoogle Scholar
  75. Saletu-Zyhlarz GM, Arnold O, Anderer P, Oberndorfer S, Walter H, Lesch OM, Saletu B (2004) Differences in brain function between relapsing and abstaining alcohol-dependent patients, evaluated by EEG mapping. Alcohol Alcohol 39(3):233–240CrossRefPubMedGoogle Scholar
  76. Sedley W, Cunningham MO (2013) Do cortical gamma oscillations promote or suppress perception? An under-asked question with an over-assumed answer. Front Hum Neurosci 7:595.
  77. Shooshtari MA, Setarehdan SK (2010) Selection of optimal EEG channels for classification of signals correlated with alcohol abusers. Paper presented at the 2010 IEEE 10th international conference on signal processing (ICSP)Google Scholar
  78. Solomon J, Vanga N, Morgan J, Joseph P (1980) Emergency-room physicians’: recognition of alcohol misuse. J Stud Alcohol 41(5):583–586CrossRefPubMedGoogle Scholar
  79. Stam C, Van Dijk B (2002) Synchronization likelihood: an unbiased measure of generalized synchronization in multivariate data sets. Phys D 163(3):236–251CrossRefGoogle Scholar
  80. Suresh S, Porjesz B, Chorlian DB, Choi K, Jones KA, Wang K, Begleiter H (2003) Auditory P3 in female alcoholics. Alcohol Clin Exp Res 27(7):1064–1074CrossRefPubMedGoogle Scholar
  81. Tavakoli HR, Hull M, Michael Okasinski L (2011) Review of current clinical biomarkers for the detection of alcohol dependence. Innov Clin Neurosci 8(3):26–33PubMedPubMedCentralGoogle Scholar
  82. Tcheslavski GV, Gonen FF (2012) Alcoholism-related alterations in spectrum, coherence, and phase synchrony of topical electroencephalogram. Comput Biol Med 42(4):394–401CrossRefPubMedGoogle Scholar
  83. Wan L, Baldridge RM, Colby AM, Stanford MS (2010) Association of P3 amplitude to treatment completion in substance dependent individuals. Psychiatry Res 177(1):223–227CrossRefPubMedGoogle Scholar
  84. Watson CG, Tilleskjor C, Hoodecheck-Schow E, Pucel J, Jacobs L (1984) Do alcoholics give valid self-reports? J Stud Alcohol 45(4):344–348CrossRefPubMedGoogle Scholar
  85. Welch BL (1947) The generalization ofstudent’s’ problem when several different population variances are involved. Biometrika 34(1/2):28–35CrossRefPubMedGoogle Scholar
  86. Winterer G, Klöppel B, Heinz A, Ziller M, Dufeu P, Schmidt LG, Herrmann WM (1998) Quantitative EEG (QEEG) predicts relapse in patients with chronic alcoholism and points to a frontally pronounced cerebral disturbance. Psychiatry Res 78(1):101–113CrossRefPubMedGoogle Scholar
  87. Yazdani A, Setarehdan SK (2007) Classification of EEG signals correlated with alcohol abusers. Paper presented at the 9th international symposium on signal processing and its applications, 2007. ISSPA 2007Google Scholar
  88. Zhang XL, Begleiter H, Porjesz B, Litke A (1997) Electrophysiological evidence of memory impairment in alcoholic patients. Biol Psychiatry 42(12):1157–1171CrossRefPubMedGoogle Scholar
  89. Zhong S, Ghosh J (2002) HMMs and coupled HMMs for multi-channel EEG classification. Paper presented at the proceedings of the IEEE international joint conference on neural networksGoogle Scholar
  90. Zhu G, Li Y, Wen PP, Wang S (2014) Analysis of alcoholic EEG signals based on horizontal visibility graph entropy. Brain Inform 1(1–4):19–25CrossRefPubMedPubMedCentralGoogle Scholar
  91. Zúquete A, Quintela B, Cunha JPS (2010) Biometric authentication using electroencephalograms: a practical study using visual evoked potentials. Electrón Telecomun 5(2):185–194Google Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2017

Authors and Affiliations

  1. 1.Department of Electrical and Electronic Engineering, Center for Intelligent Signal and Imaging Research (CISIR)Universiti Teknologi PETRONASSeri IskandarMalaysia
  2. 2.Universiti Malaya, Aras 21, Wisma R&D Universiti MalayaKuala LumpurMalaysia

Personalised recommendations