Controlling mechanism of absence seizures by deep brain stimulus applied on subthalamic nucleus

  • Bing Hu
  • Yu Guo
  • Xiaoqiang Zou
  • Jing Dong
  • Long Pan
  • Min Yu
  • Zhejia Yang
  • Chaowei Zhou
  • Zhang Cheng
  • Wanyue Tang
  • Haochen Sun
Research Article
  • 75 Downloads

Abstract

Based on a classical model of the basal ganglia thalamocortical network, in this paper, we employed a type of the deep brain stimulus voltage on the subthalamic nucleus to study the control mechanism of absence epilepsy seizures. We found that the seizure can be well controlled by turning the period and the duration of current stimulation into suitable ranges. It is the very interesting bidirectional periodic adjustment phenomenon. These parameters are easily regulated in clinical practice, therefore, the results obtained in this paper may further help us to understand the treatment mechanism of the epilepsy seizure.

Keywords

SWDs Subthalamic nucleus DBS 

Notes

Acknowledgements

This research was supported by the National Science Foundation of China (Grant No. 11602092); The Fundamental Research Funds for the Central Universities (Grant No. 2662015QD040) and The National Undergraduate Training Program for Innovation and Entrepreneurship of Huazhong Agricultural University (Grant No. 201710504092).

References

  1. Arakaki T, Mahon S, Charpier S, Leblois A, Hansel D (2016) The role of striatal feedforward inhibition in the maintenance of absence seizures. J Neurosci 36(37):9618–9632CrossRefPubMedGoogle Scholar
  2. Breakspear M, Roberts JA, Terry JR, Rodrigues S, Mahant N, Robinson PA (2006) A unifying explanation of primary generalized seizures through nonlinear brain modeling and bifurcation analysis. Cereb Cortex 16(9):1296–1313CrossRefPubMedGoogle Scholar
  3. Case M, Soltesz I (2011) Computational modeling of epilepsy. Epilepsia 52(s8):12–15CrossRefPubMedPubMedCentralGoogle Scholar
  4. Chabards S, Kahane P, Minotti L, Koudsie A, Hirsch E, Benabid AL (2002) Deep brain stimulation in epilepsy with particular reference to the subthalamic nucleus. Epileptic Disord 4(3):83–93Google Scholar
  5. Chambers A, Bowen JM (2013) Electrical stimulation for drug-resistant epilepsy: an evidence-based analysis. Ont Health Technol Assess Ser 13(18):1–37PubMedPubMedCentralGoogle Scholar
  6. Chen MM, Guo DQ, Wang TB, Jing W, Xia Y, Xu P, Luo C, Valdes-Sosa PA, Yao DZ (2014) Bidirectional control of absence seizures by the basal ganglia: a computational evidence. PLoS Comput Biol 10(3):e1003495CrossRefPubMedPubMedCentralGoogle Scholar
  7. Chen MM, Guo DQ, Li M, Ma T, Wu SD, Ma JI, Cui Y, Xia Y, Xu P, Yao DZ (2015) Critical roles of the direct GABAergic pallido-cortical pathway in controlling absence seizures. PLoS Comput Biol 11(10):e1004539CrossRefPubMedPubMedCentralGoogle Scholar
  8. Child ND, Stead M, Wirrell EC, Nickels KC, Wetjen NM, Lee KH, Klassen BT (2014) Chronic subthreshold subdural cortical stimulation for the treatment of focal epilepsy originating from eloquent cortex. Epilepsia 55(3):e18–e21CrossRefPubMedGoogle Scholar
  9. Coenen AM, Van Luijtelaar EL (2003) Genetic animal models for absence epilepsy: a review of the WAG/Rij strain of rats. Behav Genet 33:635–655CrossRefPubMedGoogle Scholar
  10. Crunelli V, Leresche N (2002) Childhood absence epilepsy: genes, channels, neuronsand networks. Nat Rev Neurosci 3:371–382CrossRefPubMedGoogle Scholar
  11. Da Cunha C, Boschen SL, Gmez-a A, Ross EK, Gibson WSJ, Min HK, Lee KH, Blaha CD (2015) Toward sophisticated basal ganglia neuromodulation: review on basal ganglia deep brain stimulation. Neurosci Biobehav Rev 58:186–210CrossRefPubMedPubMedCentralGoogle Scholar
  12. Dadok VM, Szeri AJ, Kirsch H, Sleigh J, Lopour B (2012) Interpretation of seizure evolution pathways via a mean-field cortical model. BMC Neurosci 13(Suppl 1):95CrossRefGoogle Scholar
  13. De Hemptinne C, Swann NC, Ostrem JL, Ryapolova-Webb ES, Luciano MS, Galifianakis NB, Starr PA (2015) Therapeutic deep brain stimulation reduces cortical phase-amplitude coupling in Parkinson’s disease. Nat Neurosci 18(5):779–786CrossRefPubMedPubMedCentralGoogle Scholar
  14. Deransart C, Depaulis A (2002) The control of seizures by the basal ganglia? A review of experimental data. Epileptic Disord 4(3):61–72Google Scholar
  15. Deransart C, Vercueil L, Marescaux C, Depaulis A (1998) The role of basal ganglia in the control of generalized absence seizures. Epilepsy Res 32(1):213–223CrossRefPubMedGoogle Scholar
  16. Fan DG, Wang QY, Perc M (2015) Disinhibition-induced transitions between absence and tonic–clonic epileptic seizures. Sci Rep 5:12618CrossRefPubMedPubMedCentralGoogle Scholar
  17. Fasano A, Aquino CC, Krauss JK, Honey CR, Bloem BR (2015) Axial disability and deep brain stimulation in patients with Parkinson disease. Nat Rev Neurol 11(2):98–110CrossRefPubMedGoogle Scholar
  18. Feng L, Liu TT, Ye DW, Qiu Q, Xiang HB, Cheung CW (2014) Stimulation of the dorsal portion of subthalamic nucleus may be a viable therapeutic approach in pharmacoresistant epilepsy: a virally mediated transsynaptic tracing study in transgenic mouse model. Epilepsy Behav 31:114–116CrossRefPubMedGoogle Scholar
  19. Guo DQ, Wu SD, Chen MM, Perc M, Zhang YS, Ma JI, Cui Y, Xu P, Xia Y, Yao DZ (2016b) Regulation of irregular neuronal firing by autaptic transmission. Sci Rep 6:26096CrossRefPubMedPubMedCentralGoogle Scholar
  20. Guo H, Zhang H, Kuang Y, Wang C, Jing X, Gu J, Gao G (2014) Electrical stimulation of the substantia nigra pars reticulata (SNr) suppresses chemically induced neocortical seizures in rats. J Mol Neurosci 53(4):546–552CrossRefPubMedGoogle Scholar
  21. Guo DQ, Chen MM, Perc M, Wu SD, Xia C, Zhang YS, Xu P, Xia Y, Yao DZ (2016a) Firing regulation of fast-spiking interneurons by autaptic inhibition. Europhys Lett EPL 114(3):30001CrossRefGoogle Scholar
  22. Handforth A, DeSalles AAF, Krahl SE (2006) Deep brain stimulation of the subthalamic nucleus as adjunct treatment for refractory epilepsy. Epilepsia 47(7):1239–1241CrossRefPubMedGoogle Scholar
  23. Hu B, Wang QY (2015) Controlling absence seizures by deep brain stimulus applied on substantia nigra pars reticulata and cortex. Chaos Solitons Fractals 80:13–23CrossRefGoogle Scholar
  24. Hu B, Guo DQ, Wang QY (2015) Control of absence seizures induced by the pathways connected to SRN in corticothalamic system. Cogn Neurodyn 9(3):279–289CrossRefPubMedGoogle Scholar
  25. Hu B, Chen S, Chi HM, Chen J, Yuan PP, Lai HH, Dong WY (2017) Controlling absence seizures by tuning activation level of the thalamus and striatum. Chaos Solitons Fractals 95:65–76CrossRefGoogle Scholar
  26. Krishna V, Lozano AM (2014) Brain stimulation for intractable epilepsy: anterior thalamus and responsive stimulation. Ann Indian Acad Neurol 17(Suppl 1):S95PubMedPubMedCentralGoogle Scholar
  27. Krishna V, King NKK, Sammartino F, Strauss I, Andrade DM, Wennberg RA, Lozano AM (2016) Anterior nucleus deep brain stimulation for refractory epilepsy: insights into patterns of seizure control and efficacious target. Neurosurgery 78(6):802–811CrossRefPubMedGoogle Scholar
  28. Krishnamurthi N, Mulligan S, Mahant P, Samanta J, Abbas JJ (2012) Deep brain stimulation amplitude alters posture shift velocity in Parkinson’s disease. Cogn Neurodyn 6(4):325–332CrossRefPubMedPubMedCentralGoogle Scholar
  29. Lee KJ, Jang KS, Shon YM (2006) Chronic deep brain stimulation of subthalamic and anterior thalamic nuclei for controlling refractory partial epilepsy. In: Advances in functional and reparative neurosurgery. Springer Vienna, pp 87–91Google Scholar
  30. Lehtimäki K, Möttönen T, Järventausta K, Katiskoc J, Tähtinena T, Haapasaloa J, Niskakangasa T, Kiekarad T, Öhmana J, Peltolaa J (2016) Outcome based definition of the anterior thalamic deep brain stimulation target in refractory epilepsy. Brain Stimul 9(2):268–275CrossRefPubMedGoogle Scholar
  31. Loiseau P, Duche B, Pdespan JM (1995) Absence epilepsies. Epilepsia 36(12):1182–1186CrossRefPubMedGoogle Scholar
  32. Marescaux C, Vergnes M (1995) Genetic absence epilepsy in rats from Strasbourg (GAERS). ltal J Neurol Sci 16:113–118CrossRefGoogle Scholar
  33. Marten F, Rodrigues S, Benjamin O, Richardson MP, Terry JR (2009a) Onset of polyspike complexes in a mean-field model of human electroencephalography and its application to absence epilepsy. Philos Trans R Soc A Math Phys Eng Sci 367(1891):1145–1161CrossRefGoogle Scholar
  34. Marten F, Rodrigues S, Suffczynski P, Richardson MP, John R (2009b) Derivation and analysis of an ordinary differential equation mean-field model for studying clinically recorded epilepsy dynamics. Phys Rev E 79(2):021911CrossRefGoogle Scholar
  35. Meeren H, van Luijtelaar G, da Silva FL, Coenen A (2005) Evolving concepts on the pathophysiology of absence seizures: the cortical focus theory. Arch Neurol 62(3):371–376CrossRefPubMedGoogle Scholar
  36. Paz JT, Huguenard JR (2015) Microcircuits and their interactions in epilepsy: is the focus out of focus? Nat Neurosci 18(3):351–359CrossRefPubMedPubMedCentralGoogle Scholar
  37. Paz JT, Bryant AS, Peng K, Fenno L, Yizhar O, Frankel WN, Deisseroth K, Huguenard JR (2011) A new mode of corticothalamic transmission revealed in the Gria4-/-model of absence epilepsy. Nat Neurosci 14(9):1167–1173CrossRefPubMedPubMedCentralGoogle Scholar
  38. Paz JT, Davidson TJ, Frechette ES, Delord B, Parada I, Peng K, Deisseroth K, Huguenard JR (2013) Closed-loop optogenetic control of thalamus as a tool for interrupting seizures after cortical injury. Nat Neurosci 16(1):64–70CrossRefPubMedGoogle Scholar
  39. Pinault D, O’Brien TJ (2005) Cellular and network mechanisms of genetically-determined absence seizures. Thalamus Relat Syst 3(3):181CrossRefPubMedPubMedCentralGoogle Scholar
  40. Rahman M, Abd-El-Barr MM, Vedam-Mai V, Foote KD, Murad GJA, Okun MS, Roper SN (2010) Disrupting abnormal electrical activity with deep brain stimulation: is epilepsy the next frontier? Neurosurg Focus 29(2):E7CrossRefPubMedGoogle Scholar
  41. Rektor I, Tomck J, Mikl M, Marecek R, Brzdil M, Rektorov I (2013) Association between the basal ganglia and large-scale brain networks in epilepsy. Brain Topogr 26(2):355–362CrossRefPubMedGoogle Scholar
  42. Roberts JA, Robinson PA (2008) Modeling absence seizure dynamics: implications for basic mechanisms and measurement of thalamocortical and corticothalamic latencies. J Theor Biol 253(1):189–201CrossRefPubMedGoogle Scholar
  43. Robinson PA, Rennie CJ, Wright JJ, Bourke PD (1998) Steady states and global dynamics of electrical activity in the cerebral cortex. Phys Rev E 58(3):3557CrossRefGoogle Scholar
  44. Robinson PA, Rennie CJ, Wright JJ, Bahramali H, Gordon E, Rowe DL (2001) Prediction of electroencephalographic spectra from neurophysiology. Phys Rev E 63(2):021903CrossRefGoogle Scholar
  45. Robinson PA, Rennie CJ, Rowe DL (2002) Dynamics of large-scale brain activity in normal arousal states and epileptic seizures. Phys Rev E 65(4):041924CrossRefGoogle Scholar
  46. Robinson PA, Rennie CJ, Rowe DL, O’Connor SC (2004) Estimation of multiscale neurophysiologic parameters by electroencephalographic means. Hum Brain Mapp 23(1):53–72CrossRefPubMedGoogle Scholar
  47. Rodrigues S, Terry JR, Breakspear M (2006) On the genesis of spike-wave oscillations in a mean-field model of human thalamic and corticothalamic dynamics. Phys Lett A 355(4):352–357CrossRefGoogle Scholar
  48. Rodrigues S, Barton D, Szalai R, Benjamin O, Richardson MP, Terry JR (2009) Transitions to spike-wave oscillations and epileptic dynamics in a human cortico-thalamic mean-field model. J Comput Neurosci 27(3):507–526CrossRefPubMedGoogle Scholar
  49. Rubin JE, Terman D (2004) High frequency stimulation of the subthalamic nucleus eliminates pathological thalamic rhythmicity in a computational model. J Comput Neurosci 16(3):211–235CrossRefPubMedGoogle Scholar
  50. Schtt M, Claussen JC (2012) Desynchronizing effect of high-frequency stimulation in a generic cortical network model. Cogn Neurodyn 6(4):343–351CrossRefGoogle Scholar
  51. Shan B, Wang J, Deng B, Wei XL, Yu HT, Li HY (2015) UKF-based closed loop iterative learning control of epileptiform wave in a neural mass model. Cognitive Neurodynamics 9(1):31C40CrossRefGoogle Scholar
  52. Shimo Y, Natori S, Oyama G, Nakajima M, Ishii H, Arai H, Hattori N (2014) Subthalamic deep brain stimulation for a Parkinson’s disease patient with duplication of SNCA. Neuromodul Technol Neural Interface 17(1):102–103CrossRefGoogle Scholar
  53. Slaght SJ, Paz T, Mahon S, Maurice N, Charpier S, Deniau JM (2002) Functional organization of the circuits connecting the cerebral cortex and the basal ganglia: implications for the role of the basal ganglia in epilepsy. Epileptic Disord 4(3):9–22Google Scholar
  54. Sorokin JM, Davidson TJ, Frechette E, Abramian AM, Deisseroth K, Huguenard JR, Paz JT (2017) Bidirectional control of generalized epilepsy networks via rapid real-time switching of firing mode. Neuron 93(1):194–210CrossRefPubMedGoogle Scholar
  55. Sweet JA, Walter BL, Gunalan K, Chaturvedi A, McIntyre CC, Miller JP (2014) Fiber tractography of the axonal pathways linking the basal ganglia and cerebellum in Parkinson disease: implications for targeting in deep brain stimulation. J Neurosurg 120(4):988–996CrossRefPubMedPubMedCentralGoogle Scholar
  56. Takeshita D, Sato YD, Bahar S (2007) Transitions between multistable states as a model of epileptic seizure dynamics. Phys Rev E 75(5):051925CrossRefGoogle Scholar
  57. Taylor PN, Wang Y, Goodfellow M, Dauwels J, Moeller F, Stephani U, Baier G (2014) A computational study of stimulus driven epileptic seizure abatement. PLoS ONE 9(12):e114316CrossRefPubMedPubMedCentralGoogle Scholar
  58. Taylor PN, Thomas J, Sinha N, Dauwels J, Kaiser M, Thesen T, Ruths J (2015) Optimal control based seizure abatement using patient derived connectivity. Front Neurosci 9:202CrossRefPubMedPubMedCentralGoogle Scholar
  59. van Albada SJ, Robinson PA (2009b) Mean-field modeling of the basal ganglia thalamocortical system. I: firing rates in healthy and parkinsonian states. J TheorBiol 257(4):642–63Google Scholar
  60. van Albada SJ, Gray RT, Drysdale PM, Robinson PA (2009a) Mean-field modeling of the basal ganglia-thalamocortical system. II: dynamics of parkinsonian oscillations. J Theor Biol 257(4):664–88CrossRefPubMedGoogle Scholar
  61. Volman V, Perc M (2010) Fast random rewiring and strong connectivity impair subthreshold signal detection in excitable networks. N J Phys 12(4):043013CrossRefGoogle Scholar
  62. Volman V, Perc M, Bazhenov M (2011) Gap junctions and epileptic seizures-two sides of the same coin? PLoS ONE 6(5):e20572CrossRefPubMedPubMedCentralGoogle Scholar
  63. Vonck K, Sprengers M, Carrette E, Dauwe I, Miatton M, Meurs A, Goossens L, Herdt VD, Achten R, Thiery E, Raedt R, Roost DV, Boon P (2013) A decade of experience with deep brain stimulation for patients with refractory medial temporal lobe epilepsy. Int J Neural Syst 23:1250034CrossRefPubMedGoogle Scholar
  64. Wichmann T, DeLong MR (2016) Deep brain stimulation for movement disorders of basal ganglia origin: restoring function or functionality? Neurotherapeutics 13(2):264–283CrossRefPubMedPubMedCentralGoogle Scholar
  65. Wilson MT, Sleigh JW, Steyn-Ross DA, Steyn-Ross ML (2006) General anesthetic-induced seizures can be explained by a mean-field model of cortical dynamics. J Am Soc Anesthesiol 104(3):588–593CrossRefGoogle Scholar
  66. Yi GS, Wang J, Deng B, Wei XL (2017) Complexity of resting-state EEG activity in the patients with early-stage Parkinson’s disease. Cogn Neurodyn 11(2):147C160CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  • Bing Hu
    • 1
  • Yu Guo
    • 1
  • Xiaoqiang Zou
    • 1
  • Jing Dong
    • 1
  • Long Pan
    • 1
  • Min Yu
    • 1
  • Zhejia Yang
    • 1
  • Chaowei Zhou
    • 1
  • Zhang Cheng
    • 1
  • Wanyue Tang
    • 1
  • Haochen Sun
    • 1
  1. 1.Institute of Applied Mathematics, Department of Mathematics and Statistics, College of ScienceHuazhong Agricultural UniversityWuhanChina

Personalised recommendations