Disrupted development and imbalanced function in the global neuronal workspace: a positive-feedback mechanism for the emergence of ASD in early infancy

Abstract

Autism spectrum disorder (ASD) is increasingly being conceptualized as a spectrum disorder of connectome development. We review evidence suggesting that ASD is characterized by a positive feedback loop that amplifies small functional variations in early-developing sensory-processing pathways into structural and functional imbalances in the global neuronal workspace. Using vision as an example, we discuss how early functional variants in visual processing may be feedback-amplified to produce variant object categories and disrupted top-down expectations, atypically large expectation-to-perception mismatches, problems re-identifying individual people and objects, socially inappropriate, generally aversive emotional responses and disrupted sensory-motor coordination. Viewing ASD in terms of feedback amplification of small functional variants allows a number of recent models of ASD to be integrated with neuroanatomical, neurofunctional and genetic data.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Abbott AE, Nair A, Keown CL, Datko M, Jahedi A, Fishman I, Müller R-A (2015) Patterns of atypical functional connectivity and behavioral links in autism differ between default, salience, and executive networks. Cereb Cortex 26:4034–4045

    PubMed  Article  Google Scholar 

  2. Achard S, Salvador R, Whitcher B, Suckling J, Bullmore E (2006) A resilient, low-frequency, small-world, human brain functional network with highly connected association cortical hubs. J Neurosci 26:63–72

    CAS  PubMed  Article  Google Scholar 

  3. Adams RA, Friston KJ, Bastos AM (2015) Active inference, predictive coding and cortical architecture. In: Casanova MF, Opris I (eds) Recent advances in the modular organization of the cortex. Springer, Berlin, pp 97–121

    Google Scholar 

  4. Alcauter S, Lin W, Smith JK, Short SJ, Goldman BD, Reznick JS, Gilmore JH, Gao W (2014) Development of thalamocortical connectivity during infancy and its cognitive correlations. J Neurosci 34:9067–9075

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  5. Allman JM, Tetreault NA, Hakeem AY, Manaye KF, Semendeferi K, Erwin JM, Park S, Goubert V, Hof PR (2011) The von Economo neurons in fronto-insular and anterior cingulate cortex. Ann N Y Acad Sci 1225:59–71

    PubMed  PubMed Central  Article  Google Scholar 

  6. American Psychiatric Association (2013) Diagnostic and statistical manual of mental disorders (DSM-V). American Psychiatric Association, Arlington, VA

    Google Scholar 

  7. Andersen SL (2003) Trajectories of brain development: point of vulnerability or window of opportunity? Neurosci Biobehav Rev 27:3–18

    PubMed  Article  Google Scholar 

  8. Andrews-Hanna JR, Smallwood J, Spreng RN (2014) The default network and self-generated thought: component processes, dynamic control, and clinical relevance. Ann N Y Acad Sci 1316:29–52

    PubMed  PubMed Central  Article  Google Scholar 

  9. Aslin RN (2007) What’s in a look? Dev Sci 10:48–53

    PubMed  PubMed Central  Article  Google Scholar 

  10. Aslin RN (2014) Infant learning: historical, conceptual, and methodological challenges. Infancy 19:2–27

    PubMed  PubMed Central  Article  Google Scholar 

  11. Baars B (1998) A cognitive theory of consciousness. Cambridge University Press, New York

    Google Scholar 

  12. Baars BJ (2005) Global workspace theory of consciousness: toward a cognitive neuroscience of human experience. Prog Brain Res 150:45–53

    PubMed  Article  Google Scholar 

  13. Baars BJ, Franklin S (2003) How conscious experience and working memory interact. Trends Cogn Sci 7:166–172

    PubMed  Article  Google Scholar 

  14. Baars BJ, Franklin S, Ramsoy TZ (2013) Global workspace dynamics: cortical “binding and propagation” enables conscious contents. Front Psychol 4:200

    PubMed  PubMed Central  Google Scholar 

  15. Baillargeon R, Li J, Gertner Y, Wu D (2011) How do infants reason about physical events? In: Goswami U (ed) The Wiley-Blackwell handbook of child cognitive development, 2nd edn. Blackwell, Oxford, pp 11–48

    Google Scholar 

  16. Ball G, Alijabar P, Zebari S, Tusor N, Arichi T, Merchant N, Robinson EC, Ogundipe E, Ruekert D, Edwards AD, Counsell SJ (2014) Rich-club organization of the newborn human brain. Proc Natl Acad Sci USA 111:7456–7461

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  17. Barabasi AL, Albert R (1999) Emergence of scaling in random networks. Science 286:509–512

    CAS  PubMed  Article  Google Scholar 

  18. Baron-Cohen S (2002) The extreme male brain theory of autism. Trends Cogn Sci 2:248–254

    Article  Google Scholar 

  19. Bassett DS, Bullmore E (2006) Small world brain networks. Neurosci 12:512–523

    Google Scholar 

  20. Bastos AM, Usrey WM, Adams RA, Mangun GR, Fries P, Friston KJ (2012) Canonical microcircuits for predictive coding. Neuron 76:695–711

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  21. Baum SH, Stevenson RA, Wallace MT (2015) Behavioral, perceptual, and neural alterations in sensory and multisensory function in autism spectrum disorder. Prog Neurobiol 134:140–160

    PubMed  PubMed Central  Article  Google Scholar 

  22. Belmonte MK, Baron-Cohen S (2004) Small-world network properties and the emergence of social cognition: evidence from functional studies of autism. In: Triesch J, Jebara T (eds) Proceedings of the 2004 international conference on development and learning. UCSD Institute for Neural Computation, La Jolla, CA, p 268

  23. Betancur C (2011) Etiological heterogeneity in autism spectrum disorders: more than 100 genetic and genomic disorders and still counting. Brain Res 1380:42–77

    CAS  PubMed  Article  Google Scholar 

  24. Block N, Carmel D, Fkeming SM, Kentridge RW, Koch C, Lamme VAF, Lau H, Rosenthal D (2014) Consciousness science: real progress and lingering misconceptions. Trends Cogn Sci 18:556–557

    PubMed  Article  Google Scholar 

  25. Brandi M-L, Wohlschläger A, Sorg C, Hermsdörfer J (2014) The neural correlates of planning and executing actual tool use. J Neurosci 34:13183–13194

    CAS  PubMed  Article  Google Scholar 

  26. Bremner JG, Johnson SP, Slater A, Mason U, Foster K, Cheshire A, Spring J (2005) Conditions for young infants’ perception of object trajectories. Child Dev 76:1029–1043

    PubMed  Article  Google Scholar 

  27. Butti C, Santos M, Uppal N, Hof PR (2013) Von Economo neurons: clinical and evolutionary perspectives. Cortex 49:312–326

    PubMed  Article  Google Scholar 

  28. Buxbaum LJ, Shapiro AD, Coslett HB (2014) Critical brain regions for tool-related and imitative actions: a componential analysis. Brain 137:1971–1985

    PubMed  PubMed Central  Article  Google Scholar 

  29. Cangelosi A, Schlesinger M (2015) Developmental robotics: from babies to robots. MIT Press, Cambridge, MA

    Google Scholar 

  30. Casey BJ, Tottenham N, Liston C, Durstan S (2005) Imaging the developing brain: what have we learned about cognitive development? Trends Cogn Sci 9:104–110

    CAS  PubMed  Article  Google Scholar 

  31. Chow ML, Pramparo T, Winn ME, Barnes CC, Li H-R, Weiss L, Fan J-B, Murray S, April C, Belinson H, Fu X-D, Wynshaw-Boris A, Schork NJ, Courchesne E (2012) Age-dependent brain gene expression and copy number anomalies in autism suggest distinct pathological processes at young versus mature ages. PLoS Genet 8:e1002592

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  32. Colombo J, Brez CC, Curtindale LM (2012) Infant perception and cognition. In: Lerner RM, Easterbrooks MA, Mistry J (eds) Handbook of psychology, vol 6: developmental psychology. Wiley, Hoboken, NJ, pp 61–89

  33. Corbetta M, Shulman GL (2002) Control of goal-directed and stimulus-driven attention in the brain. Nat Rev Neurosci 3:201–215

    CAS  PubMed  Article  Google Scholar 

  34. Courchesne E, Pierce K (2005) Why the frontal cortex in autism might be talking only to itself: local over-connectivity but long-distance disconnection. Curr Opin Neurobiol 15:225–230

    CAS  PubMed  Article  Google Scholar 

  35. Courchesne E, Redcay E, Morgan JT, Kennedy DP (2005) Autism at the beginning: microstructural and growth abnormalities underlying the cognitive and behavioral phenotype of autism. Dev Psychopathol 17:577–597

    PubMed  Article  Google Scholar 

  36. Courchesne E, Pierce K, Schumann CM, Redcay E, Buckwalter JA, Kennedy DP, Morgan JT (2007) Mapping early brain development in autism. Neuron 56:399–413

    CAS  PubMed  Article  Google Scholar 

  37. Crespi B, Badcock C (2008) Psychosis and autism as diametrical disorders of the social brain. Behav Brain Sci 31:241–320

    PubMed  Google Scholar 

  38. Currenti SA (2010) Understanding and determining the etiology of autism. Cell Mol Neurobiol 30:161–171

    PubMed  Article  Google Scholar 

  39. Damoiseaux JS, Rombouts SARB, Barkhof F, Scheltens P, Stam CJ, Smith SM, Beckmann CF (2006) Consistent resting-state networks across healthy subjects. Proc Natl Acad Sci USA 103:13848–13853

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  40. Dehaene S, Changeux JP (2004) Neural mechanisms for access to consciousness. In: Gazzaniga MS (ed) The cognitive neurosciences, 3rd edn. MIT Press, Cambridge, MA, pp 1145–1157

    Google Scholar 

  41. Dehaene S, Changeux JP (2011) Experimental and theoretical approaches to conscious processing. Neuron 70:200–227

    CAS  PubMed  Article  Google Scholar 

  42. Dehaene S, Naccache L (2001) Towards a cognitive neuroscience of consciousness: basic evidence and a workspace framework. Cognition 79:1–37

    CAS  PubMed  Article  Google Scholar 

  43. Dehaene S, Charles L, King J-R, Marti S (2014) Toward a computational theory of conscious processing. Curr Opin Neurobiol 25:76–84

    CAS  PubMed  Article  Google Scholar 

  44. Dehaene-Lambertz G, Spelke ES (2015) The infancy of the human brain. Neuron 88:93–109

    CAS  PubMed  Article  Google Scholar 

  45. DeRamus TP, Black BS, Pennick MR, Kana RK (2014) Enhanced parietal cortex activation during location detection in children with autism. Neurodev Disord 6:37

    Article  Google Scholar 

  46. Di Martino A, Fair DA, Kelly C, Satterthwaite TD, Castellanos FX, Thomason ME, Craddock RC, Luna B, Leventhal BL, Zhuo X-N, Milham MP (2014) Unraveling the miswired connectome: a developmental perspective. Neuron 83:1335–1353

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  47. Dinstein I, Pierce K, Eyler L, Solso S, Malach R, Behrmann M, Courchesne E (2011) Disrupted neural synchronization in toddlers with autism. Neuron 70:1218–1225

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  48. Doria V, Beckmann CF, Arichi T, Merchant N, Groppo M, Turkheimer FE, Counsell SJ, Murgasova M, Aljabar P, Nunes RG, Larkman DJ, Rees G, Edwards AD (2010) Emergence of resting state networks in the preterm human brain. Proc Natl Acad Sci USA 107:20015–20020

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  49. Elsabbagh M, Fernandes J, Webb SJ, Dawson G, Charman T, Johnson MH, The British Autism Study of Infant Siblings Team (2013) Disengagement of visual attention in infancy is associated with emerging autism in toddlerhood. Biol Psychol 74:189–194

    Article  Google Scholar 

  50. Elton A, Di Martino A, Hazlett HC, Gao W (2016) Neural connectivity evidence for a categorical-dimensional hybrid model of autism spectrum disorder. Biol Psychiatry 80:120–128

    PubMed  Article  Google Scholar 

  51. Fair DA, Cohen AL, Dosenbach NUF, Church JA, Miezin FM, Barch DM, Raichle MA, Petersen SE, Schlaggar BL (2008) The maturing architecture of the brain’s default network. Proc Natl Acad Sci USA 105:4028–4032

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  52. Fernandino L, Binder JR, Desai RH, Pendl SL, Humphries CJ, Gross WL, Conant LL, Seidenberg MS (2015) Concept representation reflects multimodal abstraction: a framework for embodied semantics. Cortex. doi:10.1093/cercor/bhv020

    Google Scholar 

  53. Fields C (2011) Trajectory recognition as the basis for object individuation: a functional model of object file instantiation and object-token encoding. Front Psychol 2:49

    PubMed  PubMed Central  Article  Google Scholar 

  54. Fields C (2012a) Do autism spectrum disorders involve a generalized object categorization and identification dysfunction? Med Hypotheses 79:344–351

    PubMed  Article  Google Scholar 

  55. Fields C (2012b) The very same thing: extending the object token concept to incorporate causal constraints on individual identity. Adv Cogn Psychol 8:234–247

    PubMed  PubMed Central  Article  Google Scholar 

  56. Fields C (2013) The principle of persistence, Leibniz’s law, and the computational task of object re-identification. Hum Dev 56:147–166

    Article  Google Scholar 

  57. Fields C (2014) Motion, identity and the bias toward agency. Front Hum Neurosci 8:597

    PubMed  PubMed Central  Article  Google Scholar 

  58. Fornito A, Zalesky A, Bassett DS, Meunier D, Ellison-Wright I, Yücel M, Wood SJ, Shaw K, O’Connor J, Nertney D, Mowry BJ, Pantelis C, Bullmore ET (2011) Genetic influences on cost-efficient organization of human cortical functional networks. J Neurosci 31:3261–3270

    CAS  PubMed  Article  Google Scholar 

  59. Franklin S, Ramamurthy U, D’Mello SK, McCauley L, Negatu A, Silva LR, Datla V (2007) LIDA: a computational model of global workspace theory and developmental learning. In: Proceedings of the AAAI fall symposium on artificial intelligence and consciousness. AAAI, Menlo Park, CA, pp 61–66

  60. Friston KJ (2010) The free-energy principle: a unified brain theory? Nat Rev Neurosci 11:127–138

    CAS  PubMed  Article  Google Scholar 

  61. Friston KJ (2011) Functional and effective connectivity: a review. Brain Connect 1:13–36

    PubMed  Article  Google Scholar 

  62. Friston K, Lawson R, Frith C (2012) On hyperpriors and hypopriors: comment on Pellicano and Burr. Trends Cogn Sci 17:1

    PubMed  Article  Google Scholar 

  63. Gallivan JP, Culham JC (2015) Neural coding within human brain areas involved in actions. Curr Opin Neurobiol 33:141–149

    CAS  PubMed  Article  Google Scholar 

  64. Gao W, Gilmore JH, Shen D, Smith JK, Zhu H, Lin W (2013) The synchronization within and interaction between the default and dorsal attention networks in early infancy. Cereb Cortex 23:594–603

    PubMed  Article  Google Scholar 

  65. Gao W, Alcauter S, Smith JK, Gilmore JH, Lin W (2015) Development of human brain cortical network architecture during infancy. Brain Struct Funct 220:1173–1186

    PubMed  Article  Google Scholar 

  66. Gardener H, Spiegelman D, Buka HL (2011) Perinatal and neonatal risk factors for autism: a comprehensive meta-analysis. Pediatrics 128:344–355

    PubMed  PubMed Central  Article  Google Scholar 

  67. Geschwind DH, Levitt S (2007) Autism spectrum disorders: developmental disconnection syndromes. Curr Opin Neurobiol 17:103–111

    CAS  PubMed  Article  Google Scholar 

  68. Geschwind DH (2008) Autism: many genes, common pathways? Cell 135:391–395

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  69. Geschwind DH (2009) Advances in autism. Annu Rev Med 60:367–380

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  70. Geschwind DH, Flint J (2015) Genetics and genomics of psychiatric disease. Science 349:1489–1494

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  71. Gibson JJ (1979) The ecological approach to visual perception. Houghton Mifflin, Boston

    Google Scholar 

  72. Glazebrook JF, Wallace R (2009) Small worlds and red queens in the global workspace: an information-theoretic approach. Cogn Syst Res 10:333–365

    Article  Google Scholar 

  73. Glazebrook JF, Wallace R (2015) Pathologies in functional connectivity, feedback control and robustness: a global workspace perspective on autism spectrum disorders. Cogn Proc 16:1–16

    Article  Google Scholar 

  74. Gómez CM, Flores A (2011) A neurophysiological evaluation of a cognitive cycle in humans. Neurosci Biobehav Rev 35:452–461

    PubMed  Article  Google Scholar 

  75. Gomot M, Wicker B (2012) A challenging, unpredictable world for people with autism spectrum disorder. Int J Psychophysiol 83:240–247

    PubMed  Article  Google Scholar 

  76. Gopnik A (2012) Scientific thinking in young children: theoretical advances, empirical research, and policy implications. Science 337:1623–1627

    CAS  PubMed  Article  Google Scholar 

  77. Gopnik A, Wellman HM (2012) Reconstructing constructivism: causal models, Bayesian learning mechanisms and the theory theory. Psychol Bull 138:1085–1108

    PubMed  PubMed Central  Article  Google Scholar 

  78. Gottlieb J, Oudeyer P-Y, Lopes M, Baranes A (2013) Information-seeking, curiosity, and attention: computational and neural mechanisms. Trends Cogn Sci 17:585–593

    PubMed  PubMed Central  Article  Google Scholar 

  79. Graziano MSA (2014) Speculations of the evolution of awareness. J Cogn Neurosci 26:1300–1304

    PubMed  Article  Google Scholar 

  80. Grossberg S, Seidman D (2006) Neural dynamics of autistic behaviors: cognitive, emotional, and timing substrates. Psychol Rev 113:483–525

    PubMed  Article  Google Scholar 

  81. Hahamy A, Behrmann M, Malach R (2015) The idiosyncratic brain: distortion of spontaneous connectivity patterns in autism spectrum disorder. Nat Neurosci 18:302–309

    CAS  PubMed  Article  Google Scholar 

  82. Happé F, Frith U (2006) The weak coherence account: detail-focused cognitive style in autism spectrum disorders. J Autism Dev Disord 36:5–25

    PubMed  Article  Google Scholar 

  83. Harms MB, Martin A, Wallace GL (2010) Facial emotion recognition in autism spectrum disorders: a review of behavioral and neuroimaging studies. Neuropsychol Rev 20:290–322

    PubMed  Article  Google Scholar 

  84. Hellendoorn A, Wijnroks L, Leseman PPM (2015) Unraveling the nature of autism: finding order amid change. Front Psychol 6:359

    PubMed  PubMed Central  Article  Google Scholar 

  85. Hoehl S (2016) The development of category specificity in infancy—what can we learn from electrophysiology? Neuropsychologia 83:114–122

    PubMed  Article  Google Scholar 

  86. Hoehl S, Peykarjou S (2012) The early development of face processing—what makes faces special? Neurosci Bull 28:765–788

    Article  Google Scholar 

  87. Hoffman D, Prakash C (2014) Objects of consciousness. Front Psychol 5:577

    PubMed  PubMed Central  Article  Google Scholar 

  88. Huang H, Shu N, Mishra V, Jeon T, Chalak L, Wang ZJ, Rollins N, Gong G, Cheng H, Peng Y, Dong Q, He Y (2015) Development of human brain structural networks through infancy and childhood. Cereb Cortex 25:1389–1404

    PubMed  Article  Google Scholar 

  89. Iacoboni M, Dapretto M (2006) The mirror neuron system and the consequences of its dysfunction. Nat Rev Neurosci 7:942–951

    CAS  PubMed  Article  Google Scholar 

  90. Ishibashi R, Pobric G, Saito S, Lambon Ralph MA (2016) The neural network for tool-related cognition: an activation likelihood estimation meta-analysis of 70 neuroimaging contrasts. Cogn Neuropsychol 33:241–256

    PubMed  PubMed Central  Article  Google Scholar 

  91. Jarman N, Trengove C, Steur E, Tyukin I, van Leeuwen C (2014) Spatially constrained adaptive rewiring in cortical networks creates spatially modular small world architectures. Cogn Neurodyn 8:479–497

    PubMed  PubMed Central  Article  Google Scholar 

  92. Jeste SS (2011) The neurology of autism spectrum disorders. Curr Opin Neurol 24:132–139

    PubMed  PubMed Central  Article  Google Scholar 

  93. Johnson MH (2011) Interactive specialization: a domain-general framework for human functional brain development? Dev Cogn Neurosci 1:7–21

    PubMed  Article  Google Scholar 

  94. Just M, Keller T, Malave V, Kana R, Varma S (2012) Autism as a neural disorder: a theory of frontal-posterior underconnectivity. Neurosci Biobehav Rev 36:1292–1313

    PubMed  PubMed Central  Article  Google Scholar 

  95. Kaiser MD, Pelphrey KA (2012) Disrupted action perception in autism: behavioral evidence, neuroendophenotypes, and diagnostic utility. Dev Cogn Neurosci 2:25–35

    PubMed  Article  Google Scholar 

  96. Keehn B, Wagner JB, Tager-Flusberg H, Nelson CA (2013) Functional connectivity in the first year of life in infants at-risk for autism: a preliminary near-infrared spectroscopy study. Front Human Neurosci 7:444

    Article  Google Scholar 

  97. Kennedy DP, Semendeferi K, Courchesne E (2007) No reduction of spindle neuron number in frontoinsular cortex in autism. Brain Cogn 64:124–129

    PubMed  Article  Google Scholar 

  98. Kidd C, Piantadosi ST, Aslin RN (2012) The Goldilocks effect: human infants allocate attention to visual sequences that are neither too simple nor too complex. PLoS ONE 7:e36399

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  99. Kiefer M, Pulvermüller F (2012) Conceptual representations in mind and brain: theoretical developments, current evidence and future directions. Cortex 48:805–825

    PubMed  Article  Google Scholar 

  100. Kita EM, Scott EK, Goodhill GJ (2015) The influence of activity on axon pathfinding in the optic tectum. Dev Neurobiol 75:608–620

    CAS  PubMed  Article  Google Scholar 

  101. Knill DC, Pouget A (2004) The Bayesian brain: the role of uncertainty in neural coding and computation. Trends Neurosci 27:712–719

    CAS  PubMed  Article  Google Scholar 

  102. Latora V, Marchiori M (2001) Efficient behavior of small-world networks. Phys Rev Lett 87:198701

    CAS  PubMed  Article  Google Scholar 

  103. Lawson RP, Rees G, Friston KJ (2014) An aberrant precision account of autism. Front Hum Neurosci 8:302

    PubMed  PubMed Central  Article  Google Scholar 

  104. Leonard H, Dixon G, Whitehouse AJO et al (2010) Unpacking the complex nature of the autism epidemic. Res Autism Spectrum Disord 4:548–554

    Article  Google Scholar 

  105. Lewis JW (2006) Cortical networks related to human use of tools. Neuroscientist 12:211–231

    PubMed  Article  Google Scholar 

  106. Lewis JD, Evans AC, Pruett JR, Botterton K, Zwaigenbaum L, Estes A, Gerig G, Collins L, Kostopoulos P, McKinstry R, Dages S, Paterson S, Schultz RT, Styner M, Hazlett H, Piven J, (IBIS Network) (2014) Network inefficiencies in autism spectrum disorder at 24 months. Transl Psychiatry 4:e388

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  107. Lombardo MV, Pierce K, Eyler LT, Barnes CC, Ahrens-Barbeau C, Solso S, Campbell K, Courchesne E (2015) Different functional neural substrates for good and poor language outcome in autism. Neuron 86:567–577

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  108. Luo Y (2011) Three-month-old infants attribute goals to a non-human agent. Dev Sci 14:453–460

    PubMed  Article  Google Scholar 

  109. Luo Y, Baillargeon R (2010) Toward a mentalistic account of early psychological reasoning. Curr Dir Psychol Sci 19:301–307

    PubMed  PubMed Central  Article  Google Scholar 

  110. Markram H, Rinaldi T, Markram K (2007) The intense world syndrome—an alternative hypothesis for autism. Front Neurosci 1:77–96

    PubMed  PubMed Central  Article  Google Scholar 

  111. Matson JL, Kozlowski AM (2011) The increasing prevalence of autism spectrum disorders. Res Autism Spectrum Disord 5:418–425

    Article  Google Scholar 

  112. Maximo JO, Cadena EJ, Kana RK (2014) The implications of brain connectivity in the neuropsychology of autism. Neuropsychol Rev 24:16–31

    PubMed  PubMed Central  Article  Google Scholar 

  113. McCall R, Franklin S (2013) Cortical learning algorithms with predictive coding for a systems-level cognitive architecture. In: Proceedings of the second annual conference on advances in cognitive systems. Cognitive Systems Foundation, pp 149–166

  114. McFadden K, Minshew NJ (2013) Evidence for dysregulation of axonal growth and guidance in the etiology of ASD. Front Hum Neurosci 7:671

    PubMed  PubMed Central  Article  Google Scholar 

  115. Miles JH (2011) Autism subgroups from a medical genetics perspective. In: Amaral DG, Dawson G, Geschwind DH (eds) Autism spectrum disorders. Oxford University Press, New York, pp 705–721

    Google Scholar 

  116. Minshew NJ, Williams DL (2007) The new neurobiology of autism. Arch Neurol 64:945–950

    PubMed  PubMed Central  Article  Google Scholar 

  117. Müller R-A, Shih P, Keehn B, Deyoe JR, Leyden KN, Shukla DK (2011) Underconnected, but how? A survey of functional connectivity MRI studies in autism spectrum disorders. Cereb Cortex 21:2233–2243

    PubMed  PubMed Central  Article  Google Scholar 

  118. Munz M, Gobert D, Schohl A, Poquérusse J, Podgorski K, Spratt P, Ruthazer ES (2014) Rapid Hebbian axonal remodeling mediated by visual stimulation. Science 344:904–909

    CAS  PubMed  Article  Google Scholar 

  119. Needham A, Dueker G, Lockhead G (2005) Infants’ formation and use of categories to segregate objects. Cognition 94:215–240

    PubMed  Article  Google Scholar 

  120. Newman MEJ (2003) The structure and function of complex networks. SIAM Rev 45:167–256

    Article  Google Scholar 

  121. Oberman LM, Ramachandran VS (2007) The simulating social mind: the role of the mirror neuron system and simulation in the social and communicative deficits of autism spectrum disorders. Psychol Bull 133:310–327

    PubMed  Article  Google Scholar 

  122. Osiurak F, Jarry C, Lesourd M, Baumard J, Le Gall D (2013) Mechanical problem-solving strategies in left-brain damaged patients and apraxia of tool use. Neuropsychology 51:1964–1972

    Article  Google Scholar 

  123. Oudeyer P-Y, Baranes A, Kaplan F (2013) Intrinsically motivated learning of real world sensorimotor skills with developmental constraints. In: Baldassarre G, Mirolli M (eds) Intrinsically motivated learning in natural and artificial systems. Springer, Berlin, pp 303–365

    Google Scholar 

  124. Parikshak NN, Luo R, Zhang A, Won H, Lowe JK, Chandran V, Horvath S, Geschwind DH (2013) Integrative functional genomic analyses implicate specific molecular pathways and circuits in autism. Cell 155:1008–1021

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  125. Park H-J, Friston K (2013) Structural and functional brain networks: from connections to cognition. Science 342:1238411-1–1238411-8

    Article  CAS  Google Scholar 

  126. Peca J, Feng G (2012) Cellular and synaptic network defects in autism. Curr Opin Neurol 22:866–872

    CAS  Article  Google Scholar 

  127. Pellicano E, Burr D (2012) When the world becomes `too real’: a Bayesian explanation of autistic perception. Trends Cogn Sci 16:504–510

    PubMed  Article  Google Scholar 

  128. Pelphrey KA, Shultz S, Hudac CM, Vander Wyk BC (2011) Constraining heterogeneity: the social brain and its development in autism spectrum disorder. J Child Psychol Psychiatry 52:631–644

    PubMed  PubMed Central  Article  Google Scholar 

  129. Peters JM, Taquet M, Vega C et al (2013) Brain functional networks in syndromic and non-syndromic autism: a graph theoretical study of EEG connectivity. BMC Med 11:54

    PubMed  PubMed Central  Article  Google Scholar 

  130. Picci G, Gotts SJ, Scherf KS (2016) A theoretical rut: revisiting and critically evaluating the generalized under/over-connectivity hypothesis of autism. Dev Sci 19:524–549

    PubMed  Article  Google Scholar 

  131. Pinto D, Delaby E, Merico D et al (2014) Convergence of genes and cellular pathways dysregulated in autism spectrum disorders. Am J Hum Genet 94:677–694

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  132. Rajendran G, Mitchell P (2007) Cognitive theories of autism. Dev Rev 27:224–260

    Article  Google Scholar 

  133. Rakison DH, Yermoleva Y (2010) Infant categorization. Wiley Interdiscip Rev Cogn Sci 1:894–905

    PubMed  Article  Google Scholar 

  134. Righi G, Tierney AL, Tager-Flusberg H, Nelson CA (2014) Functional connectivity in the first year of life in infants at risk for autism spectrum disorder: an EEG study. PLoS ONE 9:e105176

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  135. Rippon G, Brock J, Brown C, Boucher J (2007) Disordered connectivity in the autistic brain: challenges for the ‘new psychophysiology’. Int J Psychophysiol 63:164–172

    PubMed  Article  Google Scholar 

  136. Robertson CE, Thomas C, Kravitz DJ, Wallace GL, Baron-Cohen S, Martin A, Baker CI (2014) Global motion perception deficits in autism are reflected as early as primary visual cortex. Brain 137:2588–2599

    PubMed  PubMed Central  Article  Google Scholar 

  137. Rochat P (2012) Primordial sense of embodied self-unity. In: Slaughter V, Brownell CA (eds) Early development of body representations. Cambridge University Press, Cambridge, pp 3–18

    Google Scholar 

  138. Rolls ET (2015) Limbic systems for emotion and for memory, but no single limbic system. Cortex 62:119–157

    PubMed  Article  Google Scholar 

  139. Rubinov M, Sporns O (2010) Complex network measures of brain connectivity: uses and interpretations. NeuroImage 52:1059–1069

    PubMed  Article  Google Scholar 

  140. Rugg MD, Vilberg KL (2013) Brain networks underlying episodic memory retrieval. Curr Opin Neurobiol 23:255–260

    CAS  PubMed  Article  Google Scholar 

  141. Santos M, Uppal N, Butti C, Wicinski B, Schmeidler J, Giannakopoulos P, Heinsen H, Schmitz C, Hof PR (2011) von Economo neurons in autism: a stereologic study of the frontoinsular cortex in children. Brain Res 1380:206–217

    CAS  PubMed  Article  Google Scholar 

  142. Schlesinger M, Amso D, Johnson SP, Hantehzadeh N, Gupta L (2012) Using the iCub simulator to study perceptual development: a case study. In: Proceedings of the 2012 IEEE international conference on development and learning and epigenetic robotics (ICDL). IEEE, pp 1–6. doi:10.1109/DevLrn.2012.6400866

  143. Shanahan M (2012) The brain’s connective core and its role in animal cognition. Philos Trans R Soc B 367:2704–2714

    Article  Google Scholar 

  144. Shih P, Shen M, Öttl B, Keehn B, Gaffrey MS, Müller R-A (2010) Atypical network connectivity for imitation in autism spectrum disorder. Neuropsychologia 48:2931–2939

    PubMed  PubMed Central  Article  Google Scholar 

  145. Shipp S, Adams RA, Friston KJ (2013) Reflections on agranular architecture: predictive coding in the motor cortex. Trends Neurosci 36:706–716

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  146. Simion F, Di Giorgio E, Leo I, Bardi L (2011) The processing of social stimuli in early infancy: from faces to biological motion. Prog Brain Res 189:173–193

    PubMed  Article  Google Scholar 

  147. Simms ML, Kemper TL, Timbie CM, Bauman ML, Blatt GJ (2009) The anterior cingulate cortex in autism: heterogeneity of qualitative and quantitative cytoarchitectonic features suggests possible subgroups. Acta Neuropathol 118:673–684

    PubMed  Article  Google Scholar 

  148. Sporns O (2013) Network attributes for segregation and integration in the human brain. Curr Opin Neurobiol 23:162–171

    CAS  PubMed  Article  Google Scholar 

  149. Sporns O, Honey CJ (2006) Small worlds inside big brains. Proc Natl Acad Sci USA 111:15220–15225

    Google Scholar 

  150. Sporns O, Zwi JD (2004) The small world of the cerebral cortex. Neuroinformatics 2:145–162

    PubMed  Article  Google Scholar 

  151. Sporns O, Tononi G, Edelman GM (2002) Theoretical neuroanatomy and the connectivity of the cerebral cortex. Behav Brain Res 135:69–74

    CAS  PubMed  Article  Google Scholar 

  152. Stahl AE, Feigenson L (2015) Observing the unexpected enhances infants’ learning and exploration. Science 348:91–94

    CAS  PubMed  Article  Google Scholar 

  153. Sunderland A, Wilkins L, Dineen R, Dawson SE (2013) Tool-use and the left hemisphere: what is lost in ideomotor apraxia? Brain Cogn 81:183–192

    PubMed  Article  Google Scholar 

  154. Tanaka JW, Sung A (2016) The “eye avoidance” hypothesis of autism face processing. J Autism Dev Disord 46:1538–1552

    PubMed  Article  Google Scholar 

  155. Tononi G, Koch C (2015) Consciousness: here, there and everywhere? Philos Trans R Soc B 370:20140167

    Article  Google Scholar 

  156. Toulmin H, Beckmann CF, O’Muircheartaigh J, Ball G, Nongena P, Makropoulos A, Ederies A, Counsell SJ, Kennea N, Arichi T, Tusor N, Rutherford MA, Azzopardi D, Gonzalez-Cinca N, Hajnal JV, Edwards AD (2015) Specialization and integration of functional thalamocortical connectivity in the human infant. Proc Natl Acad Sci USA 112:6485–6490

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  157. Tyszka JM, Kennedy DP, Paul LK, Adolphs R (2014) Largely typical patterns of resting-state functional connectivity in high-functioning adults with autism. Cereb Cortex 24:1894–1905

    PubMed  Article  Google Scholar 

  158. Uddin LQ (2015) Salience processing and insular cortical function and dysfunction. Nat Rev Neurosci 16:55–61

    CAS  PubMed  Article  Google Scholar 

  159. Uddin LQ, Supekar K, Lynch CJ, Khouzam A, Phillips J, Feinsten C, Ryall S, Menon V (2013a) Salience network-based classification and prediction of symptom severity in children with autism. JAMA Psychiatry 70:869–879

    PubMed  PubMed Central  Article  Google Scholar 

  160. Uddin LQ, Supekar K, Menon V (2013b) Reconceptualizing functional brain connectivity in autism from a developmental perspective. Front Hum Neurosci 7:458

    PubMed  PubMed Central  Article  Google Scholar 

  161. Vaccarino FM, Grigorenko EL, Smith KM, Stevens H (2009) Regulation of cerebral cortical size and neuron number by fibroblast growth factors: implications for autism. J. Autism Dev Disord 39:511–520

    PubMed  Article  Google Scholar 

  162. van Boxtel JJA, Lu H (2013) A predictive coding perspective on autism spectrum disorders. Front Psychol 4:19

    PubMed  PubMed Central  Google Scholar 

  163. Van de Cruys S, Evers K, Van der Hallen R, Van Eylen L, Boets B, de-Wit L, Wagemans J (2014) Precise minds in uncertain worlds: predictive coding in autism. Psychol Rev 121:649–675

    PubMed  Article  Google Scholar 

  164. van den Heuvel MP, Sporns O (2011) Rich-club organization of the human connectome. J Neurosci 31:15775–15786

    PubMed  Article  CAS  Google Scholar 

  165. van Leeuwen C (2015) What makes you think you are conscious? An agnosticist manifesto. Front Hum Neurosci 9:170

    PubMed  PubMed Central  Google Scholar 

  166. Vértes PE, Bullmore ET (2015) Annual research review: growth connectomics—the organization and reorganization of brain networks during normal and abnormal development. J Child Psychol Psychiatry 56:299–320

    PubMed  Article  Google Scholar 

  167. Vingerhoets G (2014) Contribution of the posterior parietal cortex in reaching, grasping, and using objects and tools. Front Psychol 5:151

    PubMed  PubMed Central  Article  Google Scholar 

  168. Vissers ME, Cohen MX, Geurts HM (2012) Brain connectivity and high functioning autism: a promising path of research that needs refined models, methodological convergence, and strong behavioral links. Neurosci Biobehav Rev 36:604–625

    PubMed  Article  Google Scholar 

  169. Volkmar F, Chawarska K, Klin A (2005) Autism in infancy and early childhood. Annu Rev Psychol 56:315–336

    PubMed  Article  Google Scholar 

  170. von Hofsten C (2007) Action in development. Dev Sci 10:54–60

    Article  Google Scholar 

  171. Vossel S, Geng JJ, Fink GR (2014) Dorsal and ventral attention systems: distinct neural circuits but collaborative roles. Neurosci 20:150–159

    Google Scholar 

  172. Wallace R (2005) Consciousness: a mathematical treatment of the global neuronal workspace model. Springer, New York

    Google Scholar 

  173. Wass S (2011) Distortions and disconnections: disrupted brain connectivity in autism. Brain Cogn 75:18–28

    PubMed  Article  Google Scholar 

  174. Watts DJ, Strogatz SH (1998) Collective dynamics of ‘small-world’ networks. Nature 393:440–442

    CAS  PubMed  Article  Google Scholar 

  175. Weigelt S, Koldewyn K, Kanwisher N (2012) Face identity recognition in autism spectrum disorders: a review of behavioral studies. Neurosci Biobehav Rev 36:1060–1084

    PubMed  Article  Google Scholar 

  176. Westermann G, Mareschal D (2012) From perceptual to language-mediated categorization. Philos Trans R Soc B 369:20120391

    Article  Google Scholar 

  177. Williams JH, Whiten A, Suddendorf T, Perrett DI (2001) Imitation, mirror neurons and autism. Neurosci Biobehav Rev 25:287–295

    CAS  PubMed  Article  Google Scholar 

  178. Willsey AJ, Sanders SJ, Li M et al (2013) Coexpression networks implicate human midfetal deep cortical projection neurons in the pathogenesis of autism. Cell 155:997–1007

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  179. Yap P-T, Fan Y, Chen Y, Gilmore JH, Lin W, Shen D (2011) Development trends of white matter connectivity in the first years of life. PLoS ONE 6:e24678

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  180. Yeo BTT, Krienen FM, Sepulcre J, Sabuncu MR, Lashkari D, Hollinshead M, Roffman JL, Smoller JW, Zöllei L, Polimeni JR, Fischl B, Liu H, Buckner RL (2011) The organization of the human cerebral cortex estimated by intrinsic functional connectivity. J Neurophysiol 106:1125–1165

    PubMed  Article  Google Scholar 

  181. Zimmer HD, Ecker UKD (2010) Remembering perceptual features unequally bound in object and episodic tokens: neural mechanisms and their electrophysiological correlates. Neurosci Biobehav Rev 34:1066–1079

    PubMed  Article  Google Scholar 

  182. Zmigrod S, de Sonneville LMJ, Colzato LS, Swaab H, Hommel B (2013) Cognitive control of feature bindings: evidence from children with autistic spectrum disorder. Psychol Res 77:147–154

    PubMed  Article  Google Scholar 

  183. Zwaigenbaum L, Young GS, Stone WL, Dobkins K, Ozonoff S, Brian J, Bryson SE, Carver LJ, Hutman T, Iverson JM, Landa RJ, Messinger D (2014) Early head growth in infants at risk of autism: a baby siblings research consortium study. J Am Acad Child Adolesc Psychiatry 53:1053–1062

    PubMed  PubMed Central  Article  Google Scholar 

Download references

Acknowledgements

We acknowledge, with thanks, comments from Dr. Sander van de Cruys and from two anonymous referees.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Chris Fields.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest relevant to the reported research.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fields, C., Glazebrook, J.F. Disrupted development and imbalanced function in the global neuronal workspace: a positive-feedback mechanism for the emergence of ASD in early infancy. Cogn Neurodyn 11, 1–21 (2017). https://doi.org/10.1007/s11571-016-9419-8

Download citation

Keywords

  • Categorization
  • Connectome
  • Predictive coding
  • Prenatal development
  • Resting-state networks
  • Small-world networks