Cognitive Neurodynamics

, Volume 11, Issue 1, pp 1–21 | Cite as

Disrupted development and imbalanced function in the global neuronal workspace: a positive-feedback mechanism for the emergence of ASD in early infancy

Review Paper

Abstract

Autism spectrum disorder (ASD) is increasingly being conceptualized as a spectrum disorder of connectome development. We review evidence suggesting that ASD is characterized by a positive feedback loop that amplifies small functional variations in early-developing sensory-processing pathways into structural and functional imbalances in the global neuronal workspace. Using vision as an example, we discuss how early functional variants in visual processing may be feedback-amplified to produce variant object categories and disrupted top-down expectations, atypically large expectation-to-perception mismatches, problems re-identifying individual people and objects, socially inappropriate, generally aversive emotional responses and disrupted sensory-motor coordination. Viewing ASD in terms of feedback amplification of small functional variants allows a number of recent models of ASD to be integrated with neuroanatomical, neurofunctional and genetic data.

Keywords

Categorization Connectome Predictive coding Prenatal development Resting-state networks Small-world networks 

References

  1. Abbott AE, Nair A, Keown CL, Datko M, Jahedi A, Fishman I, Müller R-A (2015) Patterns of atypical functional connectivity and behavioral links in autism differ between default, salience, and executive networks. Cereb Cortex 26:4034–4045PubMedCrossRefGoogle Scholar
  2. Achard S, Salvador R, Whitcher B, Suckling J, Bullmore E (2006) A resilient, low-frequency, small-world, human brain functional network with highly connected association cortical hubs. J Neurosci 26:63–72PubMedCrossRefGoogle Scholar
  3. Adams RA, Friston KJ, Bastos AM (2015) Active inference, predictive coding and cortical architecture. In: Casanova MF, Opris I (eds) Recent advances in the modular organization of the cortex. Springer, Berlin, pp 97–121CrossRefGoogle Scholar
  4. Alcauter S, Lin W, Smith JK, Short SJ, Goldman BD, Reznick JS, Gilmore JH, Gao W (2014) Development of thalamocortical connectivity during infancy and its cognitive correlations. J Neurosci 34:9067–9075PubMedPubMedCentralCrossRefGoogle Scholar
  5. Allman JM, Tetreault NA, Hakeem AY, Manaye KF, Semendeferi K, Erwin JM, Park S, Goubert V, Hof PR (2011) The von Economo neurons in fronto-insular and anterior cingulate cortex. Ann N Y Acad Sci 1225:59–71PubMedPubMedCentralCrossRefGoogle Scholar
  6. American Psychiatric Association (2013) Diagnostic and statistical manual of mental disorders (DSM-V). American Psychiatric Association, Arlington, VACrossRefGoogle Scholar
  7. Andersen SL (2003) Trajectories of brain development: point of vulnerability or window of opportunity? Neurosci Biobehav Rev 27:3–18PubMedCrossRefGoogle Scholar
  8. Andrews-Hanna JR, Smallwood J, Spreng RN (2014) The default network and self-generated thought: component processes, dynamic control, and clinical relevance. Ann N Y Acad Sci 1316:29–52PubMedPubMedCentralCrossRefGoogle Scholar
  9. Aslin RN (2007) What’s in a look? Dev Sci 10:48–53PubMedPubMedCentralCrossRefGoogle Scholar
  10. Aslin RN (2014) Infant learning: historical, conceptual, and methodological challenges. Infancy 19:2–27PubMedPubMedCentralCrossRefGoogle Scholar
  11. Baars B (1998) A cognitive theory of consciousness. Cambridge University Press, New YorkGoogle Scholar
  12. Baars BJ (2005) Global workspace theory of consciousness: toward a cognitive neuroscience of human experience. Prog Brain Res 150:45–53PubMedCrossRefGoogle Scholar
  13. Baars BJ, Franklin S (2003) How conscious experience and working memory interact. Trends Cogn Sci 7:166–172PubMedCrossRefGoogle Scholar
  14. Baars BJ, Franklin S, Ramsoy TZ (2013) Global workspace dynamics: cortical “binding and propagation” enables conscious contents. Front Psychol 4:200PubMedPubMedCentralGoogle Scholar
  15. Baillargeon R, Li J, Gertner Y, Wu D (2011) How do infants reason about physical events? In: Goswami U (ed) The Wiley-Blackwell handbook of child cognitive development, 2nd edn. Blackwell, Oxford, pp 11–48Google Scholar
  16. Ball G, Alijabar P, Zebari S, Tusor N, Arichi T, Merchant N, Robinson EC, Ogundipe E, Ruekert D, Edwards AD, Counsell SJ (2014) Rich-club organization of the newborn human brain. Proc Natl Acad Sci USA 111:7456–7461PubMedPubMedCentralCrossRefGoogle Scholar
  17. Barabasi AL, Albert R (1999) Emergence of scaling in random networks. Science 286:509–512PubMedCrossRefGoogle Scholar
  18. Baron-Cohen S (2002) The extreme male brain theory of autism. Trends Cogn Sci 2:248–254CrossRefGoogle Scholar
  19. Bassett DS, Bullmore E (2006) Small world brain networks. Neurosci 12:512–523Google Scholar
  20. Bastos AM, Usrey WM, Adams RA, Mangun GR, Fries P, Friston KJ (2012) Canonical microcircuits for predictive coding. Neuron 76:695–711PubMedPubMedCentralCrossRefGoogle Scholar
  21. Baum SH, Stevenson RA, Wallace MT (2015) Behavioral, perceptual, and neural alterations in sensory and multisensory function in autism spectrum disorder. Prog Neurobiol 134:140–160PubMedPubMedCentralCrossRefGoogle Scholar
  22. Belmonte MK, Baron-Cohen S (2004) Small-world network properties and the emergence of social cognition: evidence from functional studies of autism. In: Triesch J, Jebara T (eds) Proceedings of the 2004 international conference on development and learning. UCSD Institute for Neural Computation, La Jolla, CA, p 268Google Scholar
  23. Betancur C (2011) Etiological heterogeneity in autism spectrum disorders: more than 100 genetic and genomic disorders and still counting. Brain Res 1380:42–77PubMedCrossRefGoogle Scholar
  24. Block N, Carmel D, Fkeming SM, Kentridge RW, Koch C, Lamme VAF, Lau H, Rosenthal D (2014) Consciousness science: real progress and lingering misconceptions. Trends Cogn Sci 18:556–557PubMedCrossRefGoogle Scholar
  25. Brandi M-L, Wohlschläger A, Sorg C, Hermsdörfer J (2014) The neural correlates of planning and executing actual tool use. J Neurosci 34:13183–13194PubMedCrossRefGoogle Scholar
  26. Bremner JG, Johnson SP, Slater A, Mason U, Foster K, Cheshire A, Spring J (2005) Conditions for young infants’ perception of object trajectories. Child Dev 76:1029–1043PubMedCrossRefGoogle Scholar
  27. Butti C, Santos M, Uppal N, Hof PR (2013) Von Economo neurons: clinical and evolutionary perspectives. Cortex 49:312–326PubMedCrossRefGoogle Scholar
  28. Buxbaum LJ, Shapiro AD, Coslett HB (2014) Critical brain regions for tool-related and imitative actions: a componential analysis. Brain 137:1971–1985PubMedPubMedCentralCrossRefGoogle Scholar
  29. Cangelosi A, Schlesinger M (2015) Developmental robotics: from babies to robots. MIT Press, Cambridge, MAGoogle Scholar
  30. Casey BJ, Tottenham N, Liston C, Durstan S (2005) Imaging the developing brain: what have we learned about cognitive development? Trends Cogn Sci 9:104–110PubMedCrossRefGoogle Scholar
  31. Chow ML, Pramparo T, Winn ME, Barnes CC, Li H-R, Weiss L, Fan J-B, Murray S, April C, Belinson H, Fu X-D, Wynshaw-Boris A, Schork NJ, Courchesne E (2012) Age-dependent brain gene expression and copy number anomalies in autism suggest distinct pathological processes at young versus mature ages. PLoS Genet 8:e1002592PubMedPubMedCentralCrossRefGoogle Scholar
  32. Colombo J, Brez CC, Curtindale LM (2012) Infant perception and cognition. In: Lerner RM, Easterbrooks MA, Mistry J (eds) Handbook of psychology, vol 6: developmental psychology. Wiley, Hoboken, NJ, pp 61–89Google Scholar
  33. Corbetta M, Shulman GL (2002) Control of goal-directed and stimulus-driven attention in the brain. Nat Rev Neurosci 3:201–215PubMedCrossRefGoogle Scholar
  34. Courchesne E, Pierce K (2005) Why the frontal cortex in autism might be talking only to itself: local over-connectivity but long-distance disconnection. Curr Opin Neurobiol 15:225–230PubMedCrossRefGoogle Scholar
  35. Courchesne E, Redcay E, Morgan JT, Kennedy DP (2005) Autism at the beginning: microstructural and growth abnormalities underlying the cognitive and behavioral phenotype of autism. Dev Psychopathol 17:577–597PubMedCrossRefGoogle Scholar
  36. Courchesne E, Pierce K, Schumann CM, Redcay E, Buckwalter JA, Kennedy DP, Morgan JT (2007) Mapping early brain development in autism. Neuron 56:399–413PubMedCrossRefGoogle Scholar
  37. Crespi B, Badcock C (2008) Psychosis and autism as diametrical disorders of the social brain. Behav Brain Sci 31:241–320PubMedGoogle Scholar
  38. Currenti SA (2010) Understanding and determining the etiology of autism. Cell Mol Neurobiol 30:161–171PubMedCrossRefGoogle Scholar
  39. Damoiseaux JS, Rombouts SARB, Barkhof F, Scheltens P, Stam CJ, Smith SM, Beckmann CF (2006) Consistent resting-state networks across healthy subjects. Proc Natl Acad Sci USA 103:13848–13853PubMedPubMedCentralCrossRefGoogle Scholar
  40. Dehaene S, Changeux JP (2004) Neural mechanisms for access to consciousness. In: Gazzaniga MS (ed) The cognitive neurosciences, 3rd edn. MIT Press, Cambridge, MA, pp 1145–1157Google Scholar
  41. Dehaene S, Changeux JP (2011) Experimental and theoretical approaches to conscious processing. Neuron 70:200–227PubMedCrossRefGoogle Scholar
  42. Dehaene S, Naccache L (2001) Towards a cognitive neuroscience of consciousness: basic evidence and a workspace framework. Cognition 79:1–37PubMedCrossRefGoogle Scholar
  43. Dehaene S, Charles L, King J-R, Marti S (2014) Toward a computational theory of conscious processing. Curr Opin Neurobiol 25:76–84PubMedCrossRefGoogle Scholar
  44. Dehaene-Lambertz G, Spelke ES (2015) The infancy of the human brain. Neuron 88:93–109PubMedCrossRefGoogle Scholar
  45. DeRamus TP, Black BS, Pennick MR, Kana RK (2014) Enhanced parietal cortex activation during location detection in children with autism. Neurodev Disord 6:37CrossRefGoogle Scholar
  46. Di Martino A, Fair DA, Kelly C, Satterthwaite TD, Castellanos FX, Thomason ME, Craddock RC, Luna B, Leventhal BL, Zhuo X-N, Milham MP (2014) Unraveling the miswired connectome: a developmental perspective. Neuron 83:1335–1353PubMedPubMedCentralCrossRefGoogle Scholar
  47. Dinstein I, Pierce K, Eyler L, Solso S, Malach R, Behrmann M, Courchesne E (2011) Disrupted neural synchronization in toddlers with autism. Neuron 70:1218–1225PubMedPubMedCentralCrossRefGoogle Scholar
  48. Doria V, Beckmann CF, Arichi T, Merchant N, Groppo M, Turkheimer FE, Counsell SJ, Murgasova M, Aljabar P, Nunes RG, Larkman DJ, Rees G, Edwards AD (2010) Emergence of resting state networks in the preterm human brain. Proc Natl Acad Sci USA 107:20015–20020PubMedPubMedCentralCrossRefGoogle Scholar
  49. Elsabbagh M, Fernandes J, Webb SJ, Dawson G, Charman T, Johnson MH, The British Autism Study of Infant Siblings Team (2013) Disengagement of visual attention in infancy is associated with emerging autism in toddlerhood. Biol Psychol 74:189–194CrossRefGoogle Scholar
  50. Elton A, Di Martino A, Hazlett HC, Gao W (2016) Neural connectivity evidence for a categorical-dimensional hybrid model of autism spectrum disorder. Biol Psychiatry 80:120–128PubMedCrossRefGoogle Scholar
  51. Fair DA, Cohen AL, Dosenbach NUF, Church JA, Miezin FM, Barch DM, Raichle MA, Petersen SE, Schlaggar BL (2008) The maturing architecture of the brain’s default network. Proc Natl Acad Sci USA 105:4028–4032PubMedPubMedCentralCrossRefGoogle Scholar
  52. Fernandino L, Binder JR, Desai RH, Pendl SL, Humphries CJ, Gross WL, Conant LL, Seidenberg MS (2015) Concept representation reflects multimodal abstraction: a framework for embodied semantics. Cortex. doi:10.1093/cercor/bhv020 Google Scholar
  53. Fields C (2011) Trajectory recognition as the basis for object individuation: a functional model of object file instantiation and object-token encoding. Front Psychol 2:49PubMedPubMedCentralCrossRefGoogle Scholar
  54. Fields C (2012a) Do autism spectrum disorders involve a generalized object categorization and identification dysfunction? Med Hypotheses 79:344–351PubMedCrossRefGoogle Scholar
  55. Fields C (2012b) The very same thing: extending the object token concept to incorporate causal constraints on individual identity. Adv Cogn Psychol 8:234–247PubMedPubMedCentralCrossRefGoogle Scholar
  56. Fields C (2013) The principle of persistence, Leibniz’s law, and the computational task of object re-identification. Hum Dev 56:147–166CrossRefGoogle Scholar
  57. Fields C (2014) Motion, identity and the bias toward agency. Front Hum Neurosci 8:597PubMedPubMedCentralCrossRefGoogle Scholar
  58. Fornito A, Zalesky A, Bassett DS, Meunier D, Ellison-Wright I, Yücel M, Wood SJ, Shaw K, O’Connor J, Nertney D, Mowry BJ, Pantelis C, Bullmore ET (2011) Genetic influences on cost-efficient organization of human cortical functional networks. J Neurosci 31:3261–3270PubMedCrossRefGoogle Scholar
  59. Franklin S, Ramamurthy U, D’Mello SK, McCauley L, Negatu A, Silva LR, Datla V (2007) LIDA: a computational model of global workspace theory and developmental learning. In: Proceedings of the AAAI fall symposium on artificial intelligence and consciousness. AAAI, Menlo Park, CA, pp 61–66Google Scholar
  60. Friston KJ (2010) The free-energy principle: a unified brain theory? Nat Rev Neurosci 11:127–138PubMedCrossRefGoogle Scholar
  61. Friston KJ (2011) Functional and effective connectivity: a review. Brain Connect 1:13–36PubMedCrossRefGoogle Scholar
  62. Friston K, Lawson R, Frith C (2012) On hyperpriors and hypopriors: comment on Pellicano and Burr. Trends Cogn Sci 17:1PubMedCrossRefGoogle Scholar
  63. Gallivan JP, Culham JC (2015) Neural coding within human brain areas involved in actions. Curr Opin Neurobiol 33:141–149PubMedCrossRefGoogle Scholar
  64. Gao W, Gilmore JH, Shen D, Smith JK, Zhu H, Lin W (2013) The synchronization within and interaction between the default and dorsal attention networks in early infancy. Cereb Cortex 23:594–603PubMedCrossRefGoogle Scholar
  65. Gao W, Alcauter S, Smith JK, Gilmore JH, Lin W (2015) Development of human brain cortical network architecture during infancy. Brain Struct Funct 220:1173–1186PubMedCrossRefGoogle Scholar
  66. Gardener H, Spiegelman D, Buka HL (2011) Perinatal and neonatal risk factors for autism: a comprehensive meta-analysis. Pediatrics 128:344–355PubMedPubMedCentralCrossRefGoogle Scholar
  67. Geschwind DH, Levitt S (2007) Autism spectrum disorders: developmental disconnection syndromes. Curr Opin Neurobiol 17:103–111PubMedCrossRefGoogle Scholar
  68. Geschwind DH (2008) Autism: many genes, common pathways? Cell 135:391–395PubMedPubMedCentralCrossRefGoogle Scholar
  69. Geschwind DH (2009) Advances in autism. Annu Rev Med 60:367–380PubMedPubMedCentralCrossRefGoogle Scholar
  70. Geschwind DH, Flint J (2015) Genetics and genomics of psychiatric disease. Science 349:1489–1494PubMedPubMedCentralCrossRefGoogle Scholar
  71. Gibson JJ (1979) The ecological approach to visual perception. Houghton Mifflin, BostonGoogle Scholar
  72. Glazebrook JF, Wallace R (2009) Small worlds and red queens in the global workspace: an information-theoretic approach. Cogn Syst Res 10:333–365CrossRefGoogle Scholar
  73. Glazebrook JF, Wallace R (2015) Pathologies in functional connectivity, feedback control and robustness: a global workspace perspective on autism spectrum disorders. Cogn Proc 16:1–16CrossRefGoogle Scholar
  74. Gómez CM, Flores A (2011) A neurophysiological evaluation of a cognitive cycle in humans. Neurosci Biobehav Rev 35:452–461PubMedCrossRefGoogle Scholar
  75. Gomot M, Wicker B (2012) A challenging, unpredictable world for people with autism spectrum disorder. Int J Psychophysiol 83:240–247PubMedCrossRefGoogle Scholar
  76. Gopnik A (2012) Scientific thinking in young children: theoretical advances, empirical research, and policy implications. Science 337:1623–1627PubMedCrossRefGoogle Scholar
  77. Gopnik A, Wellman HM (2012) Reconstructing constructivism: causal models, Bayesian learning mechanisms and the theory theory. Psychol Bull 138:1085–1108PubMedPubMedCentralCrossRefGoogle Scholar
  78. Gottlieb J, Oudeyer P-Y, Lopes M, Baranes A (2013) Information-seeking, curiosity, and attention: computational and neural mechanisms. Trends Cogn Sci 17:585–593PubMedPubMedCentralCrossRefGoogle Scholar
  79. Graziano MSA (2014) Speculations of the evolution of awareness. J Cogn Neurosci 26:1300–1304PubMedCrossRefGoogle Scholar
  80. Grossberg S, Seidman D (2006) Neural dynamics of autistic behaviors: cognitive, emotional, and timing substrates. Psychol Rev 113:483–525PubMedCrossRefGoogle Scholar
  81. Hahamy A, Behrmann M, Malach R (2015) The idiosyncratic brain: distortion of spontaneous connectivity patterns in autism spectrum disorder. Nat Neurosci 18:302–309PubMedCrossRefGoogle Scholar
  82. Happé F, Frith U (2006) The weak coherence account: detail-focused cognitive style in autism spectrum disorders. J Autism Dev Disord 36:5–25PubMedCrossRefGoogle Scholar
  83. Harms MB, Martin A, Wallace GL (2010) Facial emotion recognition in autism spectrum disorders: a review of behavioral and neuroimaging studies. Neuropsychol Rev 20:290–322PubMedCrossRefGoogle Scholar
  84. Hellendoorn A, Wijnroks L, Leseman PPM (2015) Unraveling the nature of autism: finding order amid change. Front Psychol 6:359PubMedPubMedCentralCrossRefGoogle Scholar
  85. Hoehl S (2016) The development of category specificity in infancy—what can we learn from electrophysiology? Neuropsychologia 83:114–122PubMedCrossRefGoogle Scholar
  86. Hoehl S, Peykarjou S (2012) The early development of face processing—what makes faces special? Neurosci Bull 28:765–788CrossRefGoogle Scholar
  87. Hoffman D, Prakash C (2014) Objects of consciousness. Front Psychol 5:577PubMedPubMedCentralCrossRefGoogle Scholar
  88. Huang H, Shu N, Mishra V, Jeon T, Chalak L, Wang ZJ, Rollins N, Gong G, Cheng H, Peng Y, Dong Q, He Y (2015) Development of human brain structural networks through infancy and childhood. Cereb Cortex 25:1389–1404PubMedCrossRefGoogle Scholar
  89. Iacoboni M, Dapretto M (2006) The mirror neuron system and the consequences of its dysfunction. Nat Rev Neurosci 7:942–951PubMedCrossRefGoogle Scholar
  90. Ishibashi R, Pobric G, Saito S, Lambon Ralph MA (2016) The neural network for tool-related cognition: an activation likelihood estimation meta-analysis of 70 neuroimaging contrasts. Cogn Neuropsychol 33:241–256PubMedPubMedCentralCrossRefGoogle Scholar
  91. Jarman N, Trengove C, Steur E, Tyukin I, van Leeuwen C (2014) Spatially constrained adaptive rewiring in cortical networks creates spatially modular small world architectures. Cogn Neurodyn 8:479–497PubMedPubMedCentralCrossRefGoogle Scholar
  92. Jeste SS (2011) The neurology of autism spectrum disorders. Curr Opin Neurol 24:132–139PubMedPubMedCentralCrossRefGoogle Scholar
  93. Johnson MH (2011) Interactive specialization: a domain-general framework for human functional brain development? Dev Cogn Neurosci 1:7–21PubMedCrossRefGoogle Scholar
  94. Just M, Keller T, Malave V, Kana R, Varma S (2012) Autism as a neural disorder: a theory of frontal-posterior underconnectivity. Neurosci Biobehav Rev 36:1292–1313PubMedPubMedCentralCrossRefGoogle Scholar
  95. Kaiser MD, Pelphrey KA (2012) Disrupted action perception in autism: behavioral evidence, neuroendophenotypes, and diagnostic utility. Dev Cogn Neurosci 2:25–35PubMedCrossRefGoogle Scholar
  96. Keehn B, Wagner JB, Tager-Flusberg H, Nelson CA (2013) Functional connectivity in the first year of life in infants at-risk for autism: a preliminary near-infrared spectroscopy study. Front Human Neurosci 7:444CrossRefGoogle Scholar
  97. Kennedy DP, Semendeferi K, Courchesne E (2007) No reduction of spindle neuron number in frontoinsular cortex in autism. Brain Cogn 64:124–129PubMedCrossRefGoogle Scholar
  98. Kidd C, Piantadosi ST, Aslin RN (2012) The Goldilocks effect: human infants allocate attention to visual sequences that are neither too simple nor too complex. PLoS ONE 7:e36399PubMedPubMedCentralCrossRefGoogle Scholar
  99. Kiefer M, Pulvermüller F (2012) Conceptual representations in mind and brain: theoretical developments, current evidence and future directions. Cortex 48:805–825PubMedCrossRefGoogle Scholar
  100. Kita EM, Scott EK, Goodhill GJ (2015) The influence of activity on axon pathfinding in the optic tectum. Dev Neurobiol 75:608–620PubMedCrossRefGoogle Scholar
  101. Knill DC, Pouget A (2004) The Bayesian brain: the role of uncertainty in neural coding and computation. Trends Neurosci 27:712–719PubMedCrossRefGoogle Scholar
  102. Latora V, Marchiori M (2001) Efficient behavior of small-world networks. Phys Rev Lett 87:198701PubMedCrossRefGoogle Scholar
  103. Lawson RP, Rees G, Friston KJ (2014) An aberrant precision account of autism. Front Hum Neurosci 8:302PubMedPubMedCentralCrossRefGoogle Scholar
  104. Leonard H, Dixon G, Whitehouse AJO et al (2010) Unpacking the complex nature of the autism epidemic. Res Autism Spectrum Disord 4:548–554CrossRefGoogle Scholar
  105. Lewis JW (2006) Cortical networks related to human use of tools. Neuroscientist 12:211–231PubMedCrossRefGoogle Scholar
  106. Lewis JD, Evans AC, Pruett JR, Botterton K, Zwaigenbaum L, Estes A, Gerig G, Collins L, Kostopoulos P, McKinstry R, Dages S, Paterson S, Schultz RT, Styner M, Hazlett H, Piven J, (IBIS Network) (2014) Network inefficiencies in autism spectrum disorder at 24 months. Transl Psychiatry 4:e388PubMedPubMedCentralCrossRefGoogle Scholar
  107. Lombardo MV, Pierce K, Eyler LT, Barnes CC, Ahrens-Barbeau C, Solso S, Campbell K, Courchesne E (2015) Different functional neural substrates for good and poor language outcome in autism. Neuron 86:567–577PubMedPubMedCentralCrossRefGoogle Scholar
  108. Luo Y (2011) Three-month-old infants attribute goals to a non-human agent. Dev Sci 14:453–460PubMedCrossRefGoogle Scholar
  109. Luo Y, Baillargeon R (2010) Toward a mentalistic account of early psychological reasoning. Curr Dir Psychol Sci 19:301–307PubMedPubMedCentralCrossRefGoogle Scholar
  110. Markram H, Rinaldi T, Markram K (2007) The intense world syndrome—an alternative hypothesis for autism. Front Neurosci 1:77–96PubMedPubMedCentralCrossRefGoogle Scholar
  111. Matson JL, Kozlowski AM (2011) The increasing prevalence of autism spectrum disorders. Res Autism Spectrum Disord 5:418–425CrossRefGoogle Scholar
  112. Maximo JO, Cadena EJ, Kana RK (2014) The implications of brain connectivity in the neuropsychology of autism. Neuropsychol Rev 24:16–31PubMedPubMedCentralCrossRefGoogle Scholar
  113. McCall R, Franklin S (2013) Cortical learning algorithms with predictive coding for a systems-level cognitive architecture. In: Proceedings of the second annual conference on advances in cognitive systems. Cognitive Systems Foundation, pp 149–166Google Scholar
  114. McFadden K, Minshew NJ (2013) Evidence for dysregulation of axonal growth and guidance in the etiology of ASD. Front Hum Neurosci 7:671PubMedPubMedCentralCrossRefGoogle Scholar
  115. Miles JH (2011) Autism subgroups from a medical genetics perspective. In: Amaral DG, Dawson G, Geschwind DH (eds) Autism spectrum disorders. Oxford University Press, New York, pp 705–721CrossRefGoogle Scholar
  116. Minshew NJ, Williams DL (2007) The new neurobiology of autism. Arch Neurol 64:945–950PubMedPubMedCentralCrossRefGoogle Scholar
  117. Müller R-A, Shih P, Keehn B, Deyoe JR, Leyden KN, Shukla DK (2011) Underconnected, but how? A survey of functional connectivity MRI studies in autism spectrum disorders. Cereb Cortex 21:2233–2243PubMedPubMedCentralCrossRefGoogle Scholar
  118. Munz M, Gobert D, Schohl A, Poquérusse J, Podgorski K, Spratt P, Ruthazer ES (2014) Rapid Hebbian axonal remodeling mediated by visual stimulation. Science 344:904–909PubMedCrossRefGoogle Scholar
  119. Needham A, Dueker G, Lockhead G (2005) Infants’ formation and use of categories to segregate objects. Cognition 94:215–240PubMedCrossRefGoogle Scholar
  120. Newman MEJ (2003) The structure and function of complex networks. SIAM Rev 45:167–256CrossRefGoogle Scholar
  121. Oberman LM, Ramachandran VS (2007) The simulating social mind: the role of the mirror neuron system and simulation in the social and communicative deficits of autism spectrum disorders. Psychol Bull 133:310–327PubMedCrossRefGoogle Scholar
  122. Osiurak F, Jarry C, Lesourd M, Baumard J, Le Gall D (2013) Mechanical problem-solving strategies in left-brain damaged patients and apraxia of tool use. Neuropsychology 51:1964–1972CrossRefGoogle Scholar
  123. Oudeyer P-Y, Baranes A, Kaplan F (2013) Intrinsically motivated learning of real world sensorimotor skills with developmental constraints. In: Baldassarre G, Mirolli M (eds) Intrinsically motivated learning in natural and artificial systems. Springer, Berlin, pp 303–365CrossRefGoogle Scholar
  124. Parikshak NN, Luo R, Zhang A, Won H, Lowe JK, Chandran V, Horvath S, Geschwind DH (2013) Integrative functional genomic analyses implicate specific molecular pathways and circuits in autism. Cell 155:1008–1021PubMedPubMedCentralCrossRefGoogle Scholar
  125. Park H-J, Friston K (2013) Structural and functional brain networks: from connections to cognition. Science 342:1238411-1–1238411-8CrossRefGoogle Scholar
  126. Peca J, Feng G (2012) Cellular and synaptic network defects in autism. Curr Opin Neurol 22:866–872CrossRefGoogle Scholar
  127. Pellicano E, Burr D (2012) When the world becomes `too real’: a Bayesian explanation of autistic perception. Trends Cogn Sci 16:504–510PubMedCrossRefGoogle Scholar
  128. Pelphrey KA, Shultz S, Hudac CM, Vander Wyk BC (2011) Constraining heterogeneity: the social brain and its development in autism spectrum disorder. J Child Psychol Psychiatry 52:631–644PubMedPubMedCentralCrossRefGoogle Scholar
  129. Peters JM, Taquet M, Vega C et al (2013) Brain functional networks in syndromic and non-syndromic autism: a graph theoretical study of EEG connectivity. BMC Med 11:54PubMedPubMedCentralCrossRefGoogle Scholar
  130. Picci G, Gotts SJ, Scherf KS (2016) A theoretical rut: revisiting and critically evaluating the generalized under/over-connectivity hypothesis of autism. Dev Sci 19:524–549PubMedCrossRefGoogle Scholar
  131. Pinto D, Delaby E, Merico D et al (2014) Convergence of genes and cellular pathways dysregulated in autism spectrum disorders. Am J Hum Genet 94:677–694PubMedPubMedCentralCrossRefGoogle Scholar
  132. Rajendran G, Mitchell P (2007) Cognitive theories of autism. Dev Rev 27:224–260CrossRefGoogle Scholar
  133. Rakison DH, Yermoleva Y (2010) Infant categorization. Wiley Interdiscip Rev Cogn Sci 1:894–905PubMedCrossRefGoogle Scholar
  134. Righi G, Tierney AL, Tager-Flusberg H, Nelson CA (2014) Functional connectivity in the first year of life in infants at risk for autism spectrum disorder: an EEG study. PLoS ONE 9:e105176PubMedPubMedCentralCrossRefGoogle Scholar
  135. Rippon G, Brock J, Brown C, Boucher J (2007) Disordered connectivity in the autistic brain: challenges for the ‘new psychophysiology’. Int J Psychophysiol 63:164–172PubMedCrossRefGoogle Scholar
  136. Robertson CE, Thomas C, Kravitz DJ, Wallace GL, Baron-Cohen S, Martin A, Baker CI (2014) Global motion perception deficits in autism are reflected as early as primary visual cortex. Brain 137:2588–2599PubMedPubMedCentralCrossRefGoogle Scholar
  137. Rochat P (2012) Primordial sense of embodied self-unity. In: Slaughter V, Brownell CA (eds) Early development of body representations. Cambridge University Press, Cambridge, pp 3–18Google Scholar
  138. Rolls ET (2015) Limbic systems for emotion and for memory, but no single limbic system. Cortex 62:119–157PubMedCrossRefGoogle Scholar
  139. Rubinov M, Sporns O (2010) Complex network measures of brain connectivity: uses and interpretations. NeuroImage 52:1059–1069PubMedCrossRefGoogle Scholar
  140. Rugg MD, Vilberg KL (2013) Brain networks underlying episodic memory retrieval. Curr Opin Neurobiol 23:255–260PubMedCrossRefGoogle Scholar
  141. Santos M, Uppal N, Butti C, Wicinski B, Schmeidler J, Giannakopoulos P, Heinsen H, Schmitz C, Hof PR (2011) von Economo neurons in autism: a stereologic study of the frontoinsular cortex in children. Brain Res 1380:206–217PubMedCrossRefGoogle Scholar
  142. Schlesinger M, Amso D, Johnson SP, Hantehzadeh N, Gupta L (2012) Using the iCub simulator to study perceptual development: a case study. In: Proceedings of the 2012 IEEE international conference on development and learning and epigenetic robotics (ICDL). IEEE, pp 1–6. doi:10.1109/DevLrn.2012.6400866
  143. Shanahan M (2012) The brain’s connective core and its role in animal cognition. Philos Trans R Soc B 367:2704–2714CrossRefGoogle Scholar
  144. Shih P, Shen M, Öttl B, Keehn B, Gaffrey MS, Müller R-A (2010) Atypical network connectivity for imitation in autism spectrum disorder. Neuropsychologia 48:2931–2939PubMedPubMedCentralCrossRefGoogle Scholar
  145. Shipp S, Adams RA, Friston KJ (2013) Reflections on agranular architecture: predictive coding in the motor cortex. Trends Neurosci 36:706–716PubMedPubMedCentralCrossRefGoogle Scholar
  146. Simion F, Di Giorgio E, Leo I, Bardi L (2011) The processing of social stimuli in early infancy: from faces to biological motion. Prog Brain Res 189:173–193PubMedCrossRefGoogle Scholar
  147. Simms ML, Kemper TL, Timbie CM, Bauman ML, Blatt GJ (2009) The anterior cingulate cortex in autism: heterogeneity of qualitative and quantitative cytoarchitectonic features suggests possible subgroups. Acta Neuropathol 118:673–684PubMedCrossRefGoogle Scholar
  148. Sporns O (2013) Network attributes for segregation and integration in the human brain. Curr Opin Neurobiol 23:162–171PubMedCrossRefGoogle Scholar
  149. Sporns O, Honey CJ (2006) Small worlds inside big brains. Proc Natl Acad Sci USA 111:15220–15225Google Scholar
  150. Sporns O, Zwi JD (2004) The small world of the cerebral cortex. Neuroinformatics 2:145–162PubMedCrossRefGoogle Scholar
  151. Sporns O, Tononi G, Edelman GM (2002) Theoretical neuroanatomy and the connectivity of the cerebral cortex. Behav Brain Res 135:69–74PubMedCrossRefGoogle Scholar
  152. Stahl AE, Feigenson L (2015) Observing the unexpected enhances infants’ learning and exploration. Science 348:91–94PubMedCrossRefGoogle Scholar
  153. Sunderland A, Wilkins L, Dineen R, Dawson SE (2013) Tool-use and the left hemisphere: what is lost in ideomotor apraxia? Brain Cogn 81:183–192PubMedCrossRefGoogle Scholar
  154. Tanaka JW, Sung A (2016) The “eye avoidance” hypothesis of autism face processing. J Autism Dev Disord 46:1538–1552PubMedCrossRefGoogle Scholar
  155. Tononi G, Koch C (2015) Consciousness: here, there and everywhere? Philos Trans R Soc B 370:20140167CrossRefGoogle Scholar
  156. Toulmin H, Beckmann CF, O’Muircheartaigh J, Ball G, Nongena P, Makropoulos A, Ederies A, Counsell SJ, Kennea N, Arichi T, Tusor N, Rutherford MA, Azzopardi D, Gonzalez-Cinca N, Hajnal JV, Edwards AD (2015) Specialization and integration of functional thalamocortical connectivity in the human infant. Proc Natl Acad Sci USA 112:6485–6490PubMedPubMedCentralCrossRefGoogle Scholar
  157. Tyszka JM, Kennedy DP, Paul LK, Adolphs R (2014) Largely typical patterns of resting-state functional connectivity in high-functioning adults with autism. Cereb Cortex 24:1894–1905PubMedCrossRefGoogle Scholar
  158. Uddin LQ (2015) Salience processing and insular cortical function and dysfunction. Nat Rev Neurosci 16:55–61PubMedCrossRefGoogle Scholar
  159. Uddin LQ, Supekar K, Lynch CJ, Khouzam A, Phillips J, Feinsten C, Ryall S, Menon V (2013a) Salience network-based classification and prediction of symptom severity in children with autism. JAMA Psychiatry 70:869–879PubMedPubMedCentralCrossRefGoogle Scholar
  160. Uddin LQ, Supekar K, Menon V (2013b) Reconceptualizing functional brain connectivity in autism from a developmental perspective. Front Hum Neurosci 7:458PubMedPubMedCentralCrossRefGoogle Scholar
  161. Vaccarino FM, Grigorenko EL, Smith KM, Stevens H (2009) Regulation of cerebral cortical size and neuron number by fibroblast growth factors: implications for autism. J. Autism Dev Disord 39:511–520PubMedCrossRefGoogle Scholar
  162. van Boxtel JJA, Lu H (2013) A predictive coding perspective on autism spectrum disorders. Front Psychol 4:19PubMedPubMedCentralGoogle Scholar
  163. Van de Cruys S, Evers K, Van der Hallen R, Van Eylen L, Boets B, de-Wit L, Wagemans J (2014) Precise minds in uncertain worlds: predictive coding in autism. Psychol Rev 121:649–675PubMedCrossRefGoogle Scholar
  164. van den Heuvel MP, Sporns O (2011) Rich-club organization of the human connectome. J Neurosci 31:15775–15786PubMedCrossRefGoogle Scholar
  165. van Leeuwen C (2015) What makes you think you are conscious? An agnosticist manifesto. Front Hum Neurosci 9:170PubMedPubMedCentralGoogle Scholar
  166. Vértes PE, Bullmore ET (2015) Annual research review: growth connectomics—the organization and reorganization of brain networks during normal and abnormal development. J Child Psychol Psychiatry 56:299–320PubMedCrossRefGoogle Scholar
  167. Vingerhoets G (2014) Contribution of the posterior parietal cortex in reaching, grasping, and using objects and tools. Front Psychol 5:151PubMedPubMedCentralCrossRefGoogle Scholar
  168. Vissers ME, Cohen MX, Geurts HM (2012) Brain connectivity and high functioning autism: a promising path of research that needs refined models, methodological convergence, and strong behavioral links. Neurosci Biobehav Rev 36:604–625PubMedCrossRefGoogle Scholar
  169. Volkmar F, Chawarska K, Klin A (2005) Autism in infancy and early childhood. Annu Rev Psychol 56:315–336PubMedCrossRefGoogle Scholar
  170. von Hofsten C (2007) Action in development. Dev Sci 10:54–60CrossRefGoogle Scholar
  171. Vossel S, Geng JJ, Fink GR (2014) Dorsal and ventral attention systems: distinct neural circuits but collaborative roles. Neurosci 20:150–159Google Scholar
  172. Wallace R (2005) Consciousness: a mathematical treatment of the global neuronal workspace model. Springer, New YorkGoogle Scholar
  173. Wass S (2011) Distortions and disconnections: disrupted brain connectivity in autism. Brain Cogn 75:18–28PubMedCrossRefGoogle Scholar
  174. Watts DJ, Strogatz SH (1998) Collective dynamics of ‘small-world’ networks. Nature 393:440–442PubMedCrossRefGoogle Scholar
  175. Weigelt S, Koldewyn K, Kanwisher N (2012) Face identity recognition in autism spectrum disorders: a review of behavioral studies. Neurosci Biobehav Rev 36:1060–1084PubMedCrossRefGoogle Scholar
  176. Westermann G, Mareschal D (2012) From perceptual to language-mediated categorization. Philos Trans R Soc B 369:20120391CrossRefGoogle Scholar
  177. Williams JH, Whiten A, Suddendorf T, Perrett DI (2001) Imitation, mirror neurons and autism. Neurosci Biobehav Rev 25:287–295PubMedCrossRefGoogle Scholar
  178. Willsey AJ, Sanders SJ, Li M et al (2013) Coexpression networks implicate human midfetal deep cortical projection neurons in the pathogenesis of autism. Cell 155:997–1007PubMedPubMedCentralCrossRefGoogle Scholar
  179. Yap P-T, Fan Y, Chen Y, Gilmore JH, Lin W, Shen D (2011) Development trends of white matter connectivity in the first years of life. PLoS ONE 6:e24678PubMedPubMedCentralCrossRefGoogle Scholar
  180. Yeo BTT, Krienen FM, Sepulcre J, Sabuncu MR, Lashkari D, Hollinshead M, Roffman JL, Smoller JW, Zöllei L, Polimeni JR, Fischl B, Liu H, Buckner RL (2011) The organization of the human cerebral cortex estimated by intrinsic functional connectivity. J Neurophysiol 106:1125–1165PubMedCrossRefGoogle Scholar
  181. Zimmer HD, Ecker UKD (2010) Remembering perceptual features unequally bound in object and episodic tokens: neural mechanisms and their electrophysiological correlates. Neurosci Biobehav Rev 34:1066–1079PubMedCrossRefGoogle Scholar
  182. Zmigrod S, de Sonneville LMJ, Colzato LS, Swaab H, Hommel B (2013) Cognitive control of feature bindings: evidence from children with autistic spectrum disorder. Psychol Res 77:147–154PubMedCrossRefGoogle Scholar
  183. Zwaigenbaum L, Young GS, Stone WL, Dobkins K, Ozonoff S, Brian J, Bryson SE, Carver LJ, Hutman T, Iverson JM, Landa RJ, Messinger D (2014) Early head growth in infants at risk of autism: a baby siblings research consortium study. J Am Acad Child Adolesc Psychiatry 53:1053–1062PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.SonomaUSA
  2. 2.Department of Mathematics and Computer ScienceEastern Illinois UniversityCharlestonUSA

Personalised recommendations