Skip to main content
Log in

Neural network modelling of the influence of channelopathies on reflex visual attention

  • Research Article
  • Published:
Cognitive Neurodynamics Aims and scope Submit manuscript

Abstract

This paper introduces a model of Emergent Visual Attention in presence of calcium channelopathy (EVAC). By modelling channelopathy, EVAC constitutes an effort towards identifying the possible causes of autism. The network structure embodies the dual pathways model of cortical processing of visual input, with reflex attention as an emergent property of neural interactions. EVAC extends existing work by introducing attention shift in a larger-scale network and applying a phenomenological model of channelopathy. In presence of a distractor, the channelopathic network’s rate of failure to shift attention is lower than the control network’s, but overall, the control network exhibits a lower classification error rate. The simulation results also show differences in task-relative reaction times between control and channelopathic networks. The attention shift timings inferred from the model are consistent with studies of attention shift in autistic children.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. The model in (O’Reilly and Munakata 2000) uses a one-dimensional input space comprising of 7 discrete locations, 2 input categories input on a 14-units map diverging into a dorsal and a ventral pathway, each comprising of one hidden and one output layer.

  2. See authors’ note at grey.colourado.edu/CompCogNeuro.

  3. Autistic subjects often suffer from a disturbed immune system (Ashwood et al. 2006). In parallel, the importance of calcium homeostasis in the immune response is evidenced by the cytopathic effects of the Ca2+ homeostatic imbalance triggered by several viral infections, see for instance (Poggi et al. 1998; Zocchi et al. 1998; Cheshenko et al. 2003). Misra et al. (1999) also showed that beryllium toxicity is in part the result of altered Ca2+ metabolism in mononuclear phagocytes consequent to reversible opening of plasma membrane channels, which not only reveals the central role of calcium homeostasis in the immune system, but also that of membrane calcium channels in that process.

  4. These changes in timings of accommodation and hysteresis are simulated by decreasing respectively \(dt_{b_a,inc}\) and \(dt_{b_h,inc}\), as explained in Eqs. 4 and 5.

  5. Event-related potentials are EEG-recordable correlates of motor or cognitive events.

  6. Throughout this paper, reflex visual attention is also called bottom-up visual attention, visual attention capture, or, where there is no possible ambiguity, visual attention.

  7. The term “attentional spotlight” is mostly used to illustrate the selectivity of attention. It may not be a good illustration of the neurological processes underlying attention.

  8. Cortical map is the term used to name a sheet of cortical neurons with similar functions.

  9. This decussation of the optic nerves does not affect the information processing in EVAC.

  10. In equations, literal symbols that relate to a particular channel are subscripted by a letter that identifies the channel, or by \(\alpha\) for a generic expression applicable to several channels.

  11. The model’s V1 minicolumns can be minimised into 8 units, covering 4 segments orientations and 2 polarities. In that case, LGN-to-V1 projection weights are not learnt but pre-defined. This is the case in the final implementation of EVAC.

  12. Emergent version 5.0.2, 32 bit, available freely on Internet at grey.colourado.edu

  13. See authors’ notes on their website at grey.colourado.edu/CompCogNeuro.

  14. The 60 % threshold is arbitrary, but follows the convention of O’Reilly and Munakata (2000). Moreover, in the model of EVAC, the spurious activation of two or more semantic output units by more than 60 % each is made impossible by the use of a strict 1-WTA inhibition rule over the semantic output layer.

  15. The classification error rate \(r_\epsilon\) is \(r_\epsilon ={N_\epsilon }/{N}\), where \(N_\epsilon\) is the number trials where the wrong semantic output unit is activated by more than 0.6 in less than 301 time units. The activation failure rate \(r_\zeta\) is defined by \(r_\zeta ={N_\zeta }/{N}\) where \(N_\zeta\) is the number of trials where no semantic output unit gets activated by more than 0.6 in less than 301 time units.

References

  • Adams P, Snutch T (2007) Calcium channelopathies: voltage-gated calcium channels. Springer, Berlin

    Google Scholar 

  • Aisa B, Mingus B, OReilly R (2008) The emergent neural modeling system. Neural Netw 21(8):1146–1152

    Article  PubMed  Google Scholar 

  • Ashwood P, Wills S, Van de Water J (2006) The immune response in autism: a new frontier for autism research. J Leukoc Biol 80(1):1–15

    Article  CAS  PubMed  Google Scholar 

  • Baayen RH, Milin P (2010) Analyzing reaction times. Int J Psychol Res 3(2):12–28

    Google Scholar 

  • Bower JM, Beeman D (1998) The book of GENESIS: exploring realistic neural models with the general neural simulation system. Springer. http://www.genesis-sim.org/GENESIS/iBoG/index.html

  • Casanova MF, Kooten IAJ, Switala AE, Engeland H, Heinsen H, Steinbusch HWM, Hof PR, Trippe J, Stone J, Schmitz C (2006) Minicolumnar abnormalities in autism. Acta Neuropathol 112(3):287–303

    Article  PubMed  Google Scholar 

  • Cheshenko N, Del Rosario B, Woda C, Marcellino D, Satlin LM, Herold BC (2003) Herpes simplex virus triggers activation of calcium-signaling pathways. J Cell Biol 163(2):283–293

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Courchesne E, Townsend J, Akshoomoff NA, Saitoh O, Yeung-Courchesne R, Lincoln AJ, James HE, Haas RH, Schreibman L, Lau L (1994) Impairment in shifting attention in autistic and cerebellar patients. Behav Neurosci 108:848–865

    Article  CAS  PubMed  Google Scholar 

  • Dobosz K, Duch W (2010) Understanding neurodynamical systems via fuzzy symbolic dynamics. Neural Netw 23:487–496

    Article  PubMed  Google Scholar 

  • Dolphin AC (2006) A short history of voltage-gated calcium channels. Br J Pharmacol 147(Suppl 1):S56–S62

    PubMed Central  CAS  PubMed  Google Scholar 

  • Duch W, Dobosz K (2011) Visualization for understanding of neurodynamical systems. Cogn Neurodyn 5:145–160

    Article  PubMed Central  PubMed  Google Scholar 

  • Duch W, Dobosz K, Mikoajewski D (2013) Autism and ADHD–two ends of the same spectrum? Lect Notes Comput Sci 8226:623–630

    Article  Google Scholar 

  • Elsabbagh M, Volein A, Holmboe K, Tucker L, Csibra G, Baron-Cohen S, Bolton P, Charman T, Baird G, Johnson M (2009) Visual orienting in the early broader autism phenotype: disengagement and facilitation. J Child Psychol Psychiatry 50(5):637–642

    Article  PubMed Central  PubMed  Google Scholar 

  • Gargus JJ (2009) Genetic calcium signaling abnormalities in the central nervous system: seizures, migraine, and autism. Ann N Y Acad Sci 1151(1):133–156

    Article  CAS  PubMed  Google Scholar 

  • Grossberg S, Seidman D (2006) Neural dynamics of autistic behaviors: cognitive, emotional, and timing substrates. Psychol Rev 113(3):483–525

    Article  PubMed  Google Scholar 

  • Gu Y, Liljenstrm H (2007) A neural network model of attention-modulated neurodynamics. Cogn Neurodyn 1(4):275–285

    Article  PubMed Central  PubMed  Google Scholar 

  • Haab L, Trenado C, Mariam M, Strauss DJ (2011) Neurofunctional model of large-scale correlates of selective attention governed by stimulus-novelty. Cogn Neurodyn 5(1):103–111

    Article  PubMed Central  PubMed  Google Scholar 

  • Hinton G, McClelland J (1988) Learning representations by recirculation. Neural information processing systems. Denver, CO, 1987, p 358

  • Hodgkin AL, Huxley AF (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol 117(4):500–544

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kandel E, Schwartz J, Jessell T, Mack S, Dodd J (1991) Principles of neural science, 4th edn. Elsevier, New York

    Google Scholar 

  • Kohonen T (1982) Self-organized formation of topologically correct feature maps. Biol Cybern 43(1):59–69

    Article  Google Scholar 

  • Krey JF, Dolmetsch RE (2007) Molecular mechanisms of autism: a possible role for Ca2+ signaling. Curr Opin Neurobiol 17(1):112–119

    Article  CAS  PubMed  Google Scholar 

  • Lanyon LJ, Denham SL (2009) Modelling attention in individual cells leads to a system with realistic saccade behaviours. Cogn Neurodyn 3(3):223–242

    Article  PubMed Central  PubMed  Google Scholar 

  • Limpert E, Stahel WA, Abbt M (2001) Log-normal distributions across the sciences: keys and clues. Bioscience 51(5):341

    Article  Google Scholar 

  • Lipscombe D (2002) L-type calcium channels: highs and new lows. Circ Res 90(9):933–935

    Article  CAS  PubMed  Google Scholar 

  • Lu ATH, Dai X, Martinez-Agosto JA, Cantor RM (2012) Support for calcium channel gene defects in autism spectrum disorders. Mol Autism 3(1):18

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • McClelland J, Rumelhart D (1987) Explorations in parallel distributed processing handbook. MIT Press, Cambridge

    Google Scholar 

  • McEnery MW, Vance CL, Begg CM, Lee WL, Choi Y, Dubel SJ (1998) Differential expression and association of calcium channel subunits in development and disease. J Bioenerg Biomembr 30(4):409–418

    Article  CAS  PubMed  Google Scholar 

  • Michael R, Ivan I, Dan L, Michael W (2014) The role of de novo mutations in the genetics of autism spectrum disorders. Nat Rev Genet 15:133–141. doi:10.1038/nn1611

    Article  Google Scholar 

  • Misra UK, Gawdi G, Pizzo SV, Lewis JG (1999) Exposure of cultured murine peritoneal macrophages to low concentrations of beryllium induces increases in intracellular calcium concentrations and stimulates dna synthesis. J Leukoc Biol 65(6):786–791

    CAS  PubMed  Google Scholar 

  • Napolioni V, Persico AM, Porcelli V, Palmieri L (2011) The mitochondrial aspartate/glutamate carrier AGC1 and calcium homeostasis: physiological links and abnormalities in autism. Mol Neurobiol 44(1):83–92

    Article  CAS  PubMed  Google Scholar 

  • O’Reilly R (1996a) Biologically plausible error-driven learning using local activation differences: the generalized recirculation algorithm. Neural Comput 8(5):895–938

    Article  Google Scholar 

  • O’Reilly R (1996b) The leabra model of neural interactions and learning in the neocortex. PhD thesis, Carnegie Mellon University

  • O’Reilly R, Munakata Y (2000) Computational explorations in cognitive neuroscience. MIT Press, Cambridge

    Google Scholar 

  • Oja E (1982) Simplified neuron model as a principal component analyzer. J Math Biol 15(3):267–273

    Article  CAS  PubMed  Google Scholar 

  • Palmieri L, Papaleo V, Porcelli V, Scarcia P, Gaita L, Sacco R, Hager J, Rousseau F, Curatolo P, Manzi B, Militerni R, Bravaccio C, Trillo S, Schneider C, Melmed R, Elia M, Lenti C, Saccani M, Pascucci T, Puglisi-Allegra S, Reichelt KL, Persico AM (2008) Altered calcium homeostasis in autism-spectrum disorders: evidence from biochemical and genetic studies of the mitochondrial aspartate/glutamate carrier AGC1. Mol Psychiatry 15(1):38–52

    Article  PubMed  Google Scholar 

  • Piedras-Rentería ES, Barrett CF, Cao YQ, Tsien RW (2007) Voltage-gated calcium channels, calcium signaling, and channelopathies. In: Krebs J, Michalak M (eds) Calcium—a matter of life or death, vol 41. Elsevier, Amsterdam, pp 127–166

    Chapter  Google Scholar 

  • Poggi A, Rubartelli A, Zocchi MR (1998) Involvement of dihydropyridine-sensitive calcium channels in human dendritic cell function. competition by hiv-1 tat. J Biol Chem 273(13):7205–7209

    Article  CAS  PubMed  Google Scholar 

  • Posner MI (1980) Orienting of attention. Q J Exp Psychol 32(1):3–25

    Article  CAS  PubMed  Google Scholar 

  • Rumelhart DE, Hinton GE, Williams RJ (1986) Learning representations by back-propagating errors. Nature 323(6088):533–536

    Article  Google Scholar 

  • Saslow MG (1967) Effects of components of displacement-step stimuli upon latency for saccadic eye movement. J Opt Soc Am 57(8):1024–1029

    Article  CAS  PubMed  Google Scholar 

  • Sato Naoyuki, Yamaguchi Yoko (2009) Spatial-area selective retrieval of multiple objectplace associations in a hierarchical cognitive map formed by theta phase coding. Cogn Neurodyn 3(2):131–140

    Article  PubMed Central  PubMed  Google Scholar 

  • Satoh S, Usui S (2009) Engineering-approach accelerates computational understanding of V1V2 neural properties. Cogn Neurodyn 3(1):1–8

    Article  PubMed Central  PubMed  Google Scholar 

  • Schenk T, McIntosh RD (2010) Do we have independent visual streams for perception and action? Cogn Neurosci 1(1):52–62

    Article  PubMed  Google Scholar 

  • Splawski I, Timothy KW, Sharpe LM, Decher N, Kumar P, Bloise R, Napolitano C, Schwartz PJ, Joseph RM, Condouris K, Tager-Flusberg H, Priori SG, Sanguinetti MC, Keating MT (2004) Cav1.2 calcium channel dysfunction causes a multisystem disorder including arrhythmia and autism. Cell 119(1):19–31

    Article  CAS  PubMed  Google Scholar 

  • Sporns O, Honey CJ, Kötter R (2007) Identification and classification of hubs in brain networks. PLoS ONE 2(10):e1049

    Article  PubMed Central  PubMed  Google Scholar 

  • Townsend J, Harris NS, Couchesne E (1996) Visual attention abnormalities in autism: delayed orienting to location. J Int Neuropsychol Soc 2(6):541–550

    Article  CAS  PubMed  Google Scholar 

  • Townsend J, Westerfield M, Leaver E, Makeig S, Jung T, Pierce K, Courchesne E (2001) Event-related brain response abnormalities in autism: evidence for impaired cerebello-frontal spatial attention networks. Cogn Brain Res 11(1):127–145

    Article  CAS  Google Scholar 

  • Turiel A, Parga N (2003) Role of statistical symmetries in sensory coding: an optimal scale invariant code for vision. J Physiol Paris 97(4–6):491–502

    Article  PubMed  Google Scholar 

  • Ungerleider LG, Haxby JV (1994) ’what’ and ’where’ in the human brain. Curr Opin Neurobiol 4(2):157–165

    Article  CAS  PubMed  Google Scholar 

  • van der Geest JN, Kemner C, Camfferman G, Verbaten MN, van Engeland H (2001) Eye movements, visual attention, and autism: a saccadic reaction time study using the gap and overlap paradigm. Biol Psychiatry 50(8):614–619

    Article  PubMed  Google Scholar 

  • Vargas DL, Nascimbene C, Krishnan C, Zimmerman AW, Pardo CA (2005) Neuroglial activation and neuroinflammation in the brain of patients with autism. Ann Neurol 57(1):67–81

    Article  CAS  PubMed  Google Scholar 

  • Wany M, Wojcik GMN (2014) Shifting spatial attention—numerical model of posner experiment. Neurocomputing 135C:139–144

    Google Scholar 

  • Zimmerman A (ed) (2008) Autism: current theories and evidence. Humana Press, New York

    Google Scholar 

  • Zocchi MR, Rubartelli A, Morgavi P, Poggi A (1998) Hiv-1 tat inhibits human natural killer cell function by blocking l-type calcium channels. J Immunol 161(6):2938–2943

    CAS  PubMed  Google Scholar 

  • Zwaigenbaum L, Bryson S, Rogers T, Roberts W, Brian J, Szatmari P (2005) Behavioral manifestations of autism in the first year of life. Int J Dev Neurosci 23(2–3):143–152

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank the reviewers for their comments made on an earlier version of the manuscript. This paper is based on the doctoral dissertation work of Alexandre Gravier, which was funded by Nanyang Technological University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandre Gravier.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gravier, A., Quek, C., Duch, W. et al. Neural network modelling of the influence of channelopathies on reflex visual attention. Cogn Neurodyn 10, 49–72 (2016). https://doi.org/10.1007/s11571-015-9365-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11571-015-9365-x

Keywords

Navigation