Cognitive Neurodynamics

, Volume 10, Issue 1, pp 49–72 | Cite as

Neural network modelling of the influence of channelopathies on reflex visual attention

  • Alexandre Gravier
  • Chai Quek
  • Włodzisław Duch
  • Abdul Wahab
  • Joanna Gravier-Rymaszewska
Research Article


This paper introduces a model of Emergent Visual Attention in presence of calcium channelopathy (EVAC). By modelling channelopathy, EVAC constitutes an effort towards identifying the possible causes of autism. The network structure embodies the dual pathways model of cortical processing of visual input, with reflex attention as an emergent property of neural interactions. EVAC extends existing work by introducing attention shift in a larger-scale network and applying a phenomenological model of channelopathy. In presence of a distractor, the channelopathic network’s rate of failure to shift attention is lower than the control network’s, but overall, the control network exhibits a lower classification error rate. The simulation results also show differences in task-relative reaction times between control and channelopathic networks. The attention shift timings inferred from the model are consistent with studies of attention shift in autistic children.


Calcium channelopathy Visual attention Autism  Neural network Task learning 



We thank the reviewers for their comments made on an earlier version of the manuscript. This paper is based on the doctoral dissertation work of Alexandre Gravier, which was funded by Nanyang Technological University.


  1. Adams P, Snutch T (2007) Calcium channelopathies: voltage-gated calcium channels. Springer, BerlinGoogle Scholar
  2. Aisa B, Mingus B, OReilly R (2008) The emergent neural modeling system. Neural Netw 21(8):1146–1152CrossRefPubMedGoogle Scholar
  3. Ashwood P, Wills S, Van de Water J (2006) The immune response in autism: a new frontier for autism research. J Leukoc Biol 80(1):1–15CrossRefPubMedGoogle Scholar
  4. Baayen RH, Milin P (2010) Analyzing reaction times. Int J Psychol Res 3(2):12–28Google Scholar
  5. Bower JM, Beeman D (1998) The book of GENESIS: exploring realistic neural models with the general neural simulation system. Springer.
  6. Casanova MF, Kooten IAJ, Switala AE, Engeland H, Heinsen H, Steinbusch HWM, Hof PR, Trippe J, Stone J, Schmitz C (2006) Minicolumnar abnormalities in autism. Acta Neuropathol 112(3):287–303CrossRefPubMedGoogle Scholar
  7. Cheshenko N, Del Rosario B, Woda C, Marcellino D, Satlin LM, Herold BC (2003) Herpes simplex virus triggers activation of calcium-signaling pathways. J Cell Biol 163(2):283–293PubMedCentralCrossRefPubMedGoogle Scholar
  8. Courchesne E, Townsend J, Akshoomoff NA, Saitoh O, Yeung-Courchesne R, Lincoln AJ, James HE, Haas RH, Schreibman L, Lau L (1994) Impairment in shifting attention in autistic and cerebellar patients. Behav Neurosci 108:848–865CrossRefPubMedGoogle Scholar
  9. Dobosz K, Duch W (2010) Understanding neurodynamical systems via fuzzy symbolic dynamics. Neural Netw 23:487–496CrossRefPubMedGoogle Scholar
  10. Dolphin AC (2006) A short history of voltage-gated calcium channels. Br J Pharmacol 147(Suppl 1):S56–S62PubMedCentralPubMedGoogle Scholar
  11. Duch W, Dobosz K (2011) Visualization for understanding of neurodynamical systems. Cogn Neurodyn 5:145–160PubMedCentralCrossRefPubMedGoogle Scholar
  12. Duch W, Dobosz K, Mikoajewski D (2013) Autism and ADHD–two ends of the same spectrum? Lect Notes Comput Sci 8226:623–630CrossRefGoogle Scholar
  13. Elsabbagh M, Volein A, Holmboe K, Tucker L, Csibra G, Baron-Cohen S, Bolton P, Charman T, Baird G, Johnson M (2009) Visual orienting in the early broader autism phenotype: disengagement and facilitation. J Child Psychol Psychiatry 50(5):637–642PubMedCentralCrossRefPubMedGoogle Scholar
  14. Gargus JJ (2009) Genetic calcium signaling abnormalities in the central nervous system: seizures, migraine, and autism. Ann N Y Acad Sci 1151(1):133–156CrossRefPubMedGoogle Scholar
  15. Grossberg S, Seidman D (2006) Neural dynamics of autistic behaviors: cognitive, emotional, and timing substrates. Psychol Rev 113(3):483–525CrossRefPubMedGoogle Scholar
  16. Gu Y, Liljenstrm H (2007) A neural network model of attention-modulated neurodynamics. Cogn Neurodyn 1(4):275–285PubMedCentralCrossRefPubMedGoogle Scholar
  17. Haab L, Trenado C, Mariam M, Strauss DJ (2011) Neurofunctional model of large-scale correlates of selective attention governed by stimulus-novelty. Cogn Neurodyn 5(1):103–111PubMedCentralCrossRefPubMedGoogle Scholar
  18. Hinton G, McClelland J (1988) Learning representations by recirculation. Neural information processing systems. Denver, CO, 1987, p 358Google Scholar
  19. Hodgkin AL, Huxley AF (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol 117(4):500–544PubMedCentralCrossRefPubMedGoogle Scholar
  20. Kandel E, Schwartz J, Jessell T, Mack S, Dodd J (1991) Principles of neural science, 4th edn. Elsevier, New YorkGoogle Scholar
  21. Kohonen T (1982) Self-organized formation of topologically correct feature maps. Biol Cybern 43(1):59–69CrossRefGoogle Scholar
  22. Krey JF, Dolmetsch RE (2007) Molecular mechanisms of autism: a possible role for Ca2+ signaling. Curr Opin Neurobiol 17(1):112–119CrossRefPubMedGoogle Scholar
  23. Lanyon LJ, Denham SL (2009) Modelling attention in individual cells leads to a system with realistic saccade behaviours. Cogn Neurodyn 3(3):223–242PubMedCentralCrossRefPubMedGoogle Scholar
  24. Limpert E, Stahel WA, Abbt M (2001) Log-normal distributions across the sciences: keys and clues. Bioscience 51(5):341CrossRefGoogle Scholar
  25. Lipscombe D (2002) L-type calcium channels: highs and new lows. Circ Res 90(9):933–935CrossRefPubMedGoogle Scholar
  26. Lu ATH, Dai X, Martinez-Agosto JA, Cantor RM (2012) Support for calcium channel gene defects in autism spectrum disorders. Mol Autism 3(1):18PubMedCentralCrossRefPubMedGoogle Scholar
  27. McClelland J, Rumelhart D (1987) Explorations in parallel distributed processing handbook. MIT Press, CambridgeGoogle Scholar
  28. McEnery MW, Vance CL, Begg CM, Lee WL, Choi Y, Dubel SJ (1998) Differential expression and association of calcium channel subunits in development and disease. J Bioenerg Biomembr 30(4):409–418CrossRefPubMedGoogle Scholar
  29. Michael R, Ivan I, Dan L, Michael W (2014) The role of de novo mutations in the genetics of autism spectrum disorders. Nat Rev Genet 15:133–141. doi: 10.1038/nn1611 CrossRefGoogle Scholar
  30. Misra UK, Gawdi G, Pizzo SV, Lewis JG (1999) Exposure of cultured murine peritoneal macrophages to low concentrations of beryllium induces increases in intracellular calcium concentrations and stimulates dna synthesis. J Leukoc Biol 65(6):786–791PubMedGoogle Scholar
  31. Napolioni V, Persico AM, Porcelli V, Palmieri L (2011) The mitochondrial aspartate/glutamate carrier AGC1 and calcium homeostasis: physiological links and abnormalities in autism. Mol Neurobiol 44(1):83–92CrossRefPubMedGoogle Scholar
  32. O’Reilly R (1996a) Biologically plausible error-driven learning using local activation differences: the generalized recirculation algorithm. Neural Comput 8(5):895–938CrossRefGoogle Scholar
  33. O’Reilly R (1996b) The leabra model of neural interactions and learning in the neocortex. PhD thesis, Carnegie Mellon UniversityGoogle Scholar
  34. O’Reilly R, Munakata Y (2000) Computational explorations in cognitive neuroscience. MIT Press, CambridgeGoogle Scholar
  35. Oja E (1982) Simplified neuron model as a principal component analyzer. J Math Biol 15(3):267–273CrossRefPubMedGoogle Scholar
  36. Palmieri L, Papaleo V, Porcelli V, Scarcia P, Gaita L, Sacco R, Hager J, Rousseau F, Curatolo P, Manzi B, Militerni R, Bravaccio C, Trillo S, Schneider C, Melmed R, Elia M, Lenti C, Saccani M, Pascucci T, Puglisi-Allegra S, Reichelt KL, Persico AM (2008) Altered calcium homeostasis in autism-spectrum disorders: evidence from biochemical and genetic studies of the mitochondrial aspartate/glutamate carrier AGC1. Mol Psychiatry 15(1):38–52CrossRefPubMedGoogle Scholar
  37. Piedras-Rentería ES, Barrett CF, Cao YQ, Tsien RW (2007) Voltage-gated calcium channels, calcium signaling, and channelopathies. In: Krebs J, Michalak M (eds) Calcium—a matter of life or death, vol 41. Elsevier, Amsterdam, pp 127–166CrossRefGoogle Scholar
  38. Poggi A, Rubartelli A, Zocchi MR (1998) Involvement of dihydropyridine-sensitive calcium channels in human dendritic cell function. competition by hiv-1 tat. J Biol Chem 273(13):7205–7209CrossRefPubMedGoogle Scholar
  39. Posner MI (1980) Orienting of attention. Q J Exp Psychol 32(1):3–25CrossRefPubMedGoogle Scholar
  40. Rumelhart DE, Hinton GE, Williams RJ (1986) Learning representations by back-propagating errors. Nature 323(6088):533–536CrossRefGoogle Scholar
  41. Saslow MG (1967) Effects of components of displacement-step stimuli upon latency for saccadic eye movement. J Opt Soc Am 57(8):1024–1029CrossRefPubMedGoogle Scholar
  42. Sato Naoyuki, Yamaguchi Yoko (2009) Spatial-area selective retrieval of multiple objectplace associations in a hierarchical cognitive map formed by theta phase coding. Cogn Neurodyn 3(2):131–140PubMedCentralCrossRefPubMedGoogle Scholar
  43. Satoh S, Usui S (2009) Engineering-approach accelerates computational understanding of V1V2 neural properties. Cogn Neurodyn 3(1):1–8PubMedCentralCrossRefPubMedGoogle Scholar
  44. Schenk T, McIntosh RD (2010) Do we have independent visual streams for perception and action? Cogn Neurosci 1(1):52–62CrossRefPubMedGoogle Scholar
  45. Splawski I, Timothy KW, Sharpe LM, Decher N, Kumar P, Bloise R, Napolitano C, Schwartz PJ, Joseph RM, Condouris K, Tager-Flusberg H, Priori SG, Sanguinetti MC, Keating MT (2004) Cav1.2 calcium channel dysfunction causes a multisystem disorder including arrhythmia and autism. Cell 119(1):19–31CrossRefPubMedGoogle Scholar
  46. Sporns O, Honey CJ, Kötter R (2007) Identification and classification of hubs in brain networks. PLoS ONE 2(10):e1049PubMedCentralCrossRefPubMedGoogle Scholar
  47. Townsend J, Harris NS, Couchesne E (1996) Visual attention abnormalities in autism: delayed orienting to location. J Int Neuropsychol Soc 2(6):541–550CrossRefPubMedGoogle Scholar
  48. Townsend J, Westerfield M, Leaver E, Makeig S, Jung T, Pierce K, Courchesne E (2001) Event-related brain response abnormalities in autism: evidence for impaired cerebello-frontal spatial attention networks. Cogn Brain Res 11(1):127–145CrossRefGoogle Scholar
  49. Turiel A, Parga N (2003) Role of statistical symmetries in sensory coding: an optimal scale invariant code for vision. J Physiol Paris 97(4–6):491–502CrossRefPubMedGoogle Scholar
  50. Ungerleider LG, Haxby JV (1994) ’what’ and ’where’ in the human brain. Curr Opin Neurobiol 4(2):157–165CrossRefPubMedGoogle Scholar
  51. van der Geest JN, Kemner C, Camfferman G, Verbaten MN, van Engeland H (2001) Eye movements, visual attention, and autism: a saccadic reaction time study using the gap and overlap paradigm. Biol Psychiatry 50(8):614–619CrossRefPubMedGoogle Scholar
  52. Vargas DL, Nascimbene C, Krishnan C, Zimmerman AW, Pardo CA (2005) Neuroglial activation and neuroinflammation in the brain of patients with autism. Ann Neurol 57(1):67–81CrossRefPubMedGoogle Scholar
  53. Wany M, Wojcik GMN (2014) Shifting spatial attention—numerical model of posner experiment. Neurocomputing 135C:139–144Google Scholar
  54. Zimmerman A (ed) (2008) Autism: current theories and evidence. Humana Press, New YorkGoogle Scholar
  55. Zocchi MR, Rubartelli A, Morgavi P, Poggi A (1998) Hiv-1 tat inhibits human natural killer cell function by blocking l-type calcium channels. J Immunol 161(6):2938–2943PubMedGoogle Scholar
  56. Zwaigenbaum L, Bryson S, Rogers T, Roberts W, Brian J, Szatmari P (2005) Behavioral manifestations of autism in the first year of life. Int J Dev Neurosci 23(2–3):143–152CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Alexandre Gravier
    • 1
  • Chai Quek
    • 2
  • Włodzisław Duch
    • 3
  • Abdul Wahab
    • 4
  • Joanna Gravier-Rymaszewska
    • 5
  1. 1.Centre for Computational Intelligence (C2i)Nanyang Technological UniversitySingaporeSingapore
  2. 2.School of Computer EngineeringNanyang Technological UniversitySingaporeSingapore
  3. 3.Department of Informatics, School of Physics, Astronomy and InformaticsNicolaus Copernicus UniversityTorunPoland
  4. 4.School of Information and Communication TechnologyInternational Islamic University of MalaysiaKuala LumpurMalaysia
  5. 5.School of Humanities and Social SciencesNanyang Technological UniversitySingaporeSingapore

Personalised recommendations