Skip to main content
Log in

Event related desynchronization: use as a neurophysiologic marker is restricted

  • Published:
Cognitive Neurodynamics Aims and scope Submit manuscript

Abstract

The present research aims to show that the occurrence of alpha blocking or event-related desynchronization (ERD) strongly depends on the amplitude and also on the phase angle of alpha activity at the stimulus onset. Simple visual stimulation was presented to 17 healthy subjects during EEG recording. An O2 electrode was used for analysis with a 32 channel EEG sampling system. We used a segmentation of raw data in order to obtain the evoked potential. Prestimulus and poststimulus activities were filtered in the alpha (8–13 Hz) frequency band. Later, four different events (blocked, time-locked, phase-locked, and eliminated) were separately averaged. Phase-locked sweeps were determined by application of inter-trial coherence analysis. The evaluation of the data shows that “time-locked and phase-locked sweeps” were the dominating pattern and not “the blocked pattern”, which occurred only when the prestimulus alpha was high. In the analyses of EEG-EP sweeps, only 22 % of epochs showed (ERD). The ANOVA revealed significant differences between four different alpha responses (F(3,48) = 11.175; p < 0.001). Furthermore, alpha oscillations in time-locked responses were significantly higher than blocked (p < 0.0001). The analyses clearly demonstrate that important precaution is needed when using the ERD as a cognitive or pathological marker.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Anderson J, Rennie C, Gordon E, Howson A, Meares R (1991) Measurement of maximum variability within event-related potentials in schizophrenia. Psychiatry Res 39:33–44

    Article  PubMed  CAS  Google Scholar 

  • Barry RJ, Kirkaikul S, Hodder D (2000) EEG alpha activity and the ERP to target stimuli in an auditory oddball paradigm. Int J Psychophysiol 39:39–50

    Article  PubMed  CAS  Google Scholar 

  • Barry RJ, De Pascalis V, Hodder D, Clarke AR, Johnstone SJ (2003) Preferred EEG brain states at stimulus onset in a fixed interstimulus interval auditory oddball task and their effects on ERP components. Int J Psychophysiol 47(3):187–198

    Article  PubMed  Google Scholar 

  • Barry RJ, Clarke AR, Mc Carthy R, Selikowitz M, Johnstone SJ, Rushby JA (2004) Age and gender effects in EEG coherence. I. Developmental trends in normal children. Clin Neurophysiol 115:2252–2258

    Article  PubMed  Google Scholar 

  • Barry RJ, Rushby JA, Smith JL, Clarke AR, Croft RJ (2006) Dynamics of narrow-band EEG phase effects in the passive auditory oddball task. Eur J Neurosci 24(1):291–304

    Article  PubMed  Google Scholar 

  • Başar E (1980) EEG–brain dynamics. Relation between EEG and brain evoked potentials. Elsevier, Amsterdam, p 412

    Google Scholar 

  • Başar E (2011) Brain–body–mind in the nebulous cartesian system: a holistic approach by oscillations. Springer, New York

    Google Scholar 

  • Başar E (2012) A review of alpha activity in integrative brain function: fundamental physiology, sensory coding, cognition and pathology. Int J Psychophysiol 86(1):1–24

    Article  PubMed  Google Scholar 

  • Başar E, Güntekin B (2012) A short review of alpha activity in cognitive processes and in cognitive impairment. Int J Psychophysiol 86:25–38

    Article  PubMed  Google Scholar 

  • Başar E, Schürmann M (1994) Functional aspects of evoked alpha and theta responses in humans and cats: occipital recordings in cross-modality experiments. Biol Cybern 72:175–183

    Article  PubMed  Google Scholar 

  • Başar E, Stampfer HG (1985) Important associations among EEG-dynamics, eventrelated potentials, short-term memory and learning. Int J Neurosci 26(3–4):161–180

    PubMed  Google Scholar 

  • Basar E, Schürmann M, Basar-Eroglu C, Karakas S (1997) Alpha oscillations in brain functioning: an integrative theory. In: Basar E, Hari R, Lopes da Silva FH, Schürmann M (eds) Brain alpha activity: new aspects and functional correlates. special issue of the International Journal Psychophysiology, vol 26(1–3), pp 5–29

  • Başar E, Güntekin B, Tülay E, Yener GG (2010) Evoked and event related coherence of Alzheimer patients manifest differentiation of sensory-cognitive networks. Brain Res 1357:79–90

    Article  PubMed  Google Scholar 

  • Becker R, Ritter P, Villringer A (2008) Influence of ongoing alpha rhythm on the visual evoked potential. NeuroImage 39:707–716

    Article  PubMed  Google Scholar 

  • Ben-Simon E, Podlipsky I, Arieli A, Zhdanov A, Hendler T (2008) Never resting brain: simultaneous representation of two alpha related processes in humans. PLoS One 3(12):3984

    Article  Google Scholar 

  • Bishop PO, Jeremy D, McLeod JG (1953) Phenomenon of repetitive firing in lateral geniculate of cat. J Neurophysiol 16:443–447

    Google Scholar 

  • Brandt J (1997) Visual and auditory evoked phase resetting of the alpha EEG. Int J Psychophysiol 26:285–298

    Article  PubMed  CAS  Google Scholar 

  • Brandt ME, Jansen BH (1991) The relationship between prestimulus alpha amplitude and visual evoked potential amplitude. Int J Neurosci 61:261–268

    Article  PubMed  CAS  Google Scholar 

  • Creutzfeldt OD (1993) Cortex cerebri. Performance, Structural and Functional Organization of the Cortex. Springer, Berlin

    Google Scholar 

  • Delorme A, Makeig S (2004) EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J Neurosci Methods 134:9–21

    Article  PubMed  Google Scholar 

  • Dinse HR, Krüger K, Mallot HP, Best J (1991) Temporal structure of cortical information processing: cortical architecture, oscillations, and non-separability of spatiotemporal receptive field organization. In: Kruger J (ed) Neuronal cooperativity. Springer, Berlin, pp 67–104

    Google Scholar 

  • Dinse HR, Krüger K, Akhavan AC, Spengler F, Schöner G, Schreiner CE (1997) Low frequency oscillations of visual, auditory and somatosensory cortical neurons evoked by sensory stimulation. Int J Psychophysiol 26:205–227

    Article  PubMed  CAS  Google Scholar 

  • Dudkin KN, Glezer VD, Gauselman VE, Panin AI (1978) Types of receptive fields in the lateral geniculate body and their functional model. Biol Cybern 29:37–47

    Article  PubMed  CAS  Google Scholar 

  • Ford J, White P, Lim K, Pfefferbaum A (1994) Schizophrenics have fewer and smaller P300s: a single-trial analysis. Biol Psychiatry 35:96–103

    Article  PubMed  CAS  Google Scholar 

  • Greenhouse SW, Geisser S (1959) On methods in the analysis of profile data. Psy-chometrika 24:95–112

    Google Scholar 

  • Harris JB (2003) Differential conditioning of alpha amplitude: a fresh look at an old phenomenon. Clin Neurophysiol 116(6):1433–1443

    Article  Google Scholar 

  • Ishii R, Canuet L, Herdman A, Gunji A, Iwase M, Takahashi H, Nakahachi T, Hirata M, Robinson SE, Pantev C, Takeda M (2009) Cortical oscillatory power changes during auditory oddball task revealed by spatially filtered magnetoencephalography. Clin Neurophysiol 120(3):497–504

    Article  PubMed  Google Scholar 

  • Jansen BH, Brandt ME (1991) The effect of phase of prestimulus alpha activity on the averaged visual evoked response. Electroencephalogr Clin Neurophysiol 80:241–250

    Article  PubMed  CAS  Google Scholar 

  • Jasiukaitis P, Hakerem G (1998) The effect of prestimulus alpha activity on the P300. Psychophysiology 25:157–165

    Article  Google Scholar 

  • Klimesch W (1999) EEG alpha and theta oscillations reflect cognitive and memory performance: a review and analysis. Brain Res Rev 29:169–195

    Article  PubMed  CAS  Google Scholar 

  • Klimesch W, Sauseng P, Hanslmayr S (2007) EEG alpha oscillations: the inhibitiontiming hypothesis. Brain Res Rev 53(1):63–88

    Article  PubMed  Google Scholar 

  • Min BK, Herrmann CS (2007) Prestimulus EEG alpha activity reflects prestimulus top-down processing. Neurosci Lett 422(2):131–135

    Article  PubMed  CAS  Google Scholar 

  • Pfurtscheller G, Lopes da Silva FH (1999) Event-related EEG/MEG synchronization and desynchronization: basic principles. Clin Neurophysiol 110(11):1842–1857

    Article  PubMed  CAS  Google Scholar 

  • Pleydell-Pearce C (1994) DC potential correlates of attention and cognitive load. Cogn Neuropsychol 11:149–166

    Article  Google Scholar 

  • Price G (1997) The effect of pre-stimulus alpha activity on the auditory P300 paradigm: a prospective study. Brain Topogr 9:169–176

    Article  PubMed  CAS  Google Scholar 

  • Rahn E, Başar E (1993a) Prestimulus EEG-activity strongly influences the auditory evoked vertex responses: a new method for selective averaging. Int J Neurosci 69:207–220

    Article  PubMed  CAS  Google Scholar 

  • Rahn E, Başar E (1993b) Enhancement of visual evoked potentials by stimulation during low prestimulus EEG stages. Int J Neurosci 72:123–136

    Article  PubMed  CAS  Google Scholar 

  • Rémond A, Lesèvre N (1967) Variations in average visual evoked potentials as a function of the alpha rhythm phase autostimulation. EGG Clin Neurophysiol 26:42–52

    Google Scholar 

  • Rockstroh B, Elbert T, Canavan A, Lutzenberger W, Birbaumer N (1989) Slow cortical potentials and behavior. Urban and Schwarzenberg, Munich

    Google Scholar 

  • Schürmann M, Başar E (1994) Topography of alpha and theta oscillatory responses upon auditory and visual stimuli in humans. Biol Cybern 72:161–174

    Article  PubMed  Google Scholar 

  • Silvanto J, Muggleton N, Vincent W (2008) State-dependency in brain stimulation studies of perception and cognition. Trends Cogn Sci 12(12):447–454

    Article  PubMed  Google Scholar 

  • Stampfer HG, Başar E (1985) Does frequency analysis lead to better understanding of human event related potentials? Int J Neurosci 26:181–196

    Article  PubMed  CAS  Google Scholar 

  • Tallon-Baudry C, Bertrand O, Delpuech C, Pernier J (1996) Stimulus specificity of phase-locked and non-phase-locked 40 Hz visual responses in human. J Neurosci 16:4240–4249

    PubMed  CAS  Google Scholar 

  • Walter WG (1950) Normal rhythms: their development, distribution and significance. In: Hill D, Parr G (eds) Electroencephalography. McDonald, London

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erol Başar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Başar, E., Gölbaşı, B.T. Event related desynchronization: use as a neurophysiologic marker is restricted. Cogn Neurodyn 8, 437–445 (2014). https://doi.org/10.1007/s11571-014-9301-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11571-014-9301-5

Keywords

Navigation