Skip to main content
Log in

A new regime for highly robust gamma oscillation with co-exist of accurate and weak synchronization in excitatory–inhibitory networks

  • Research Article
  • Published:
Cognitive Neurodynamics Aims and scope Submit manuscript

Abstract

A great number of biological experiments show that gamma oscillation occurs in many brain areas after the presentation of stimulus. The neural systems in these brain areas are highly heterogeneous. Specifically, the neurons and synapses in these neural systems are diversified; the external inputs and parameters of these neurons and synapses are heterogeneous. How the gamma oscillation generated in such highly heterogeneous networks remains a challenging problem. Aiming at this problem, a highly heterogeneous complex network model that takes account of many aspects of real neural circuits was constructed. The network model consists of excitatory neurons and fast spiking interneurons, has three types of synapses (GABAA, AMPA, and NMDA), and has highly heterogeneous external drive currents. We found a new regime for robust gamma oscillation, i.e. the oscillation in inhibitory neurons is rather accurate but the oscillation in excitatory neurons is weak, in such highly heterogeneous neural networks. We also found that the mechanism of the oscillation is a mixture of interneuron gamma (ING) and pyramidal-interneuron gamma (PING). We explained the mixture ING and PING mechanism in a consistent-way by a compound post-synaptic current, which has a slowly rising-excitatory stage and a sharp decreasing-inhibitory stage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Ahmed OJ, Mehta MR (2012) Running speed alters the frequency of hippocampal gamma oscillations. J Neurosci 32(21):7373–7383

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • BÄorgers C, Kopell N (2003) Synchronization in networks of excitatory and inhibitory neurons with sparse, random connectivity. Neural Comput 15:509–538

    Article  Google Scholar 

  • Bartos M, Vida I, Jonas P (2007) Synaptic mechanisms of synchronized gamma oscillations in inhibitory interneuron networks. Nat Rev Neurosci 8:45–56

    Article  CAS  PubMed  Google Scholar 

  • Bathellier B, Carleton A, Gerstner W (2008) Gamma oscillations in a nonlinear regime: a minimal model approach using heterogeneous integrate-and-fire networks. Neural Comput 20:2973–3002

    Article  PubMed  Google Scholar 

  • Bosman CA, Schoffelen JM, Brunet N et al (2012) Attentional stimulus selection through selective synchronization between monkey visual areas. Neuron 75(5):875–888

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Brunel N, Hakim V (1999) Fast global oscillations in networks of integrate-and-fire neurons with low firing rates. Neural Comput 11:1621–1671

    Article  CAS  PubMed  Google Scholar 

  • Brunel N, Wang XJ (2003) What determines the frequency of fast network oscillations with irregular neural discharges? I. Synaptic dynamics and excitation-inhibition balance. J Neurophysiol 90:415–430

    Article  PubMed  Google Scholar 

  • Buzsaki G, Wang XJ et al (2012) Mechanisms of gamma oscillations. Annu Rev Neurosci 35:203–225

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dayan P, Abbott LF (2001) Theoretical neuroscience: computational and mathematical modeling of neural systems. MIT Press, Cambridge, MA

    Google Scholar 

  • Du Y, Wang RB, Han F et al (2012) Firing pattern and synchronization property analysis in a network model of the olfactory bulb. Cogn Neurodyn 6(2):203–209

    Article  PubMed Central  PubMed  Google Scholar 

  • Engelhard B, Ozeri N, Israel Z et al (2013) Inducing gamma oscillations and precise spike synchrony by operant conditioning via brain-machine interface. Neuron 77(2):361–375

    Article  CAS  PubMed  Google Scholar 

  • Hadjipapas A, Adjamian P, Swettenham JB et al (2007) Stimuli of varying spatial scale induce gamma activity with distinct temporal characteristics in human visual cortex. Neuroimage 35(2):518–530

    Article  PubMed  Google Scholar 

  • Hájos N, Paulsen O (2009) Network mechanisms of gamma oscillations in the CA3 region of the hippocampus. Neural Networks 22:1113–1119

    Article  PubMed  Google Scholar 

  • Herrmann CS, Mecklinger A (2000) Magnetoencephalographic responses to illusory figures: early evoked gamma is affected by processing of stimulus features. Int J Psychophysiol 38(3):265–281

    Article  CAS  PubMed  Google Scholar 

  • Jeong HY, Gutkin B (2007) Synchrony of neuronal oscillations controlled by GABAergic reversal potentials. Neural Comput 19:706–729

    Article  PubMed  Google Scholar 

  • Laczo B, Antal A, Niebergall R et al (2012) Transcranial alternating stimulation in a high gamma frequency range applied over V1 improves contrast perception but does not modulate spatial attention. Brain Stimul 5(4):484–491

    Article  PubMed  Google Scholar 

  • Lapray D, Bergeler J, Luhmann HJ (2009) Stimulus-induced gamma activity in the electrocorticogram of freely moving rats: the neuronal signature of novelty detection. Behav Brain Res 199(2):350–354

    Article  PubMed  Google Scholar 

  • Li XM, Morita K, Robinson HPC et al (2011) Impact of gamma-oscillatory inhibition on the signal transmission of a cortical pyramidal neuron. Cogn Neurodyn 5(3):241–251

    Article  PubMed Central  PubMed  Google Scholar 

  • Muthukumaraswamy SD, Singh KD (2013) Visual gamma oscillations: the effects of stimulus type, visual field coverage and stimulus motion on MEG and EEG recordings. NeuroImage 69:223–230

    Article  CAS  PubMed  Google Scholar 

  • Neymotin SA, Lee H, Park E et al (2011) Emergence of physiological oscillation frequencies in a computer model of neocortex. Front Comput Neurosci 19:1–17 Article 19

    Google Scholar 

  • Nikolic D, Fries P, Singer W (2013) Gamma oscillations: precise temporal coordination without a metronome. Trends cogn Sci 17(2):54–55

    Article  PubMed  Google Scholar 

  • Perry G, Hamandi K, Brindley LM et al (2013) The properties of induced gamma oscillations in human visual cortex show individual variability in their dependence on stimulus size. NeuroImage 68:83–92

    Article  PubMed  Google Scholar 

  • Rojas-Libano D, Kay LM (2008) Olfactory system gamma oscillations: the physiological dissection of a cognitive neural system. Cogn Neurodyn 2(3):179–194

    Article  PubMed Central  PubMed  Google Scholar 

  • Schadow J, Lenz D, Thaerig S et al (2007a) Stimulus intensity affects early sensory processing: visual contrast modulates evoked gamma-band activity in human EEG. Int J Psychophysiol 66(1):28–36

    Article  PubMed  Google Scholar 

  • Schadow J, Lenz D, Thaerig S et al (2007b) Stimulus intensity affects early sensory processing: sound intensity modulates auditory evoked gamma-band activity in human EEG. Int J Psychophysiol 65(2):152–161

    Article  PubMed  Google Scholar 

  • Schwarzkopf DS, Robertson DJ, Song C et al (2012) The frequency of visually induced gamma-band oscillations depends on the size of early human visual cortex. J Neurosci 32(4):1507–1512

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tiesinga P, Sejnowski TJ (2009) Cortical enlightenment: are attentional gamma oscillations driven by ING or PING? Neuron 63:727–732

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Vida I, Bartos M, Jonas P (2006) Shunting inhibition improves robustness of gamma oscillations in hippocampal interneuron networks by homogenizing firing rates. Neuron 49:107–117

    Article  CAS  PubMed  Google Scholar 

  • Wang XJ (2010) Neurophysiological and computational principles of cortical rhythms in cognition. Physiol Rev 90:1195–1268

    Article  PubMed Central  PubMed  Google Scholar 

  • Wang XJ, Buzsáki G (1996) Gamma oscillation by synaptic inhibition in a hippocampal interneuronal network model. J Neurosci 16(20):6402–6413

    CAS  PubMed  Google Scholar 

  • Wang Z, Wong WK (2013) Key role of voltage-dependent properties of synaptic currents in robust network synchronization. Neural Networks 43:55–62

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Fan H, Aihara K (2011) Three synaptic components contributing to robust network synchronization. Phys Rev E 83:051905

    Article  CAS  Google Scholar 

  • Womelsdorf T, Fries P, Mitra PP, Desimone R (2006) Gamma-band synchronization in visual cortex predicts speed of change detection. Nature 439:733–736

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research is supported by the NSF of China (Grants No. 70971021, No. 71371046, No. 61075105, and No. 11102038) and Shanghai Education Development Foundation Chenguang Project (No. 10CG33).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Fan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Fan, H. & Han, F. A new regime for highly robust gamma oscillation with co-exist of accurate and weak synchronization in excitatory–inhibitory networks. Cogn Neurodyn 8, 335–344 (2014). https://doi.org/10.1007/s11571-014-9290-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11571-014-9290-4

Keywords

Navigation