Skip to main content
Log in

Evaluating influence of microRNA in reconstructing gene regulatory networks

Cognitive Neurodynamics Aims and scope Submit manuscript

Abstract

Gene regulatory network (GRN) consists of interactions between transcription factors (TFs) and target genes (TGs). Recently, it has been observed that micro RNAs (miRNAs) play a significant part in genetic interactions. However, current microarray technologies do not capture miRNA expression levels. To overcome this, we propose a new technique to reverse engineer GRN from the available partial microarray data which contains expression levels of TFs and TGs only. Using S-System model, the approach is adapted to cope with the unavailability of information about the expression levels of miRNAs. The versatile Differential Evolutionary algorithm is used for optimization and parameter estimation. Experimental studies on four in silico networks, and a real network of Saccharomyces cerevisiae called IRMA network, show significant improvement compared to traditional S-System approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (France)

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  • Basso K, Margolin AA, Stolovitzky G, Klein U, Dalla-Favera R, Califano A (2005) Reverse engineering of regulatory networks in human b cells. Nat Genet 37(4):382–390. doi:10.1038/ng1532

    Google Scholar 

  • Butte AJ, Kohane IS (2000) Mutual information relevance networks: functional genomic clustering using pairwise entropy measurements. Pac Symp Biocomput 5:415–426

    Google Scholar 

  • Cantone I, Marucci L, Iorio F, Ricci MA, Belcastro V, Bansal M, Santini S, di Bernardo M, di Bernardo D, Cosma MP (2009) A yeast synthetic network for in vivo assessment of reverse-engineering and modeling approaches. Cell 137:172–181

    Article  CAS  PubMed  Google Scholar 

  • Chen K, Rajapaksy N (2007) The evolution of gene regulation by transcription factor and micrornas. Nat Rev Genet 8:93–103

    Article  CAS  PubMed  Google Scholar 

  • Chowdhury AR, Chetty M, Vinh NX (2012) Adaptive regulatory genes cardinality for reconstructing genetic networks. In: IEEE congress on evolutionary computation (IEEE CEC), pp 1–8

  • Della GG, Bansal M, Ambesi-Impiombato A, Antonini D, Missero C, di Bernardo D (2008) Direct targets of the trp63 transcription factor revealed by a combination of gene expression profiling and reverse engineering. Genome Res 18:939–948

    Article  Google Scholar 

  • Gardner TS, di Bernardo D, Lorenz D, Collins JJ (2003) Inferring genetic networks and identifying compound mode of action via expression profiling. Science 301(5629):102–105

    Article  CAS  PubMed  Google Scholar 

  • Guelzim N, Bottani S, Bourgine P, Kepes F (2002) Topological and causal structure of the yeast transcriptional regulatory network. Nat Genet 31(1):60–63. doi:10.1038/ng873

    Google Scholar 

  • He W, Cao J (2008) Robust stability of genetic regulatory networks with distributed delay. Cogn Neurodyn 2(4):355–361

    Article  PubMed Central  PubMed  Google Scholar 

  • He L, Hannon JG (2004) Micrornas:small rnas with a big role in gene regulation. Nat Rev Genet 5:522–532

    Article  CAS  PubMed  Google Scholar 

  • Kikuchi S, Tominaga D, Arita M, Takahashi K, Tomita M (2003) Dynamic modeling of genetic networks using genetic algorithm and s-system. Bioinformatics 19(5):643–650

    Article  CAS  PubMed  Google Scholar 

  • Kimura S, Ide K, Kashihara A, Kano M, Hatakeyama M, Masui R, Nakagawa N, Yokoyama S, Kuramitsu S, Konagaya A (2005) Inference of s-system models of genetic networks using a cooperative coevolutionary algorithm. Bioinformatics 21(7):1154–1163

    Article  CAS  PubMed  Google Scholar 

  • Luo Q, Zhang R, Liao X (2010) Unconditional global exponential stability in lagrange sense of genetic regulatory networks with sum regulatory logic. Cogn Neurodyn 4(3):251–261

    Article  PubMed Central  PubMed  Google Scholar 

  • Margolin A, Nemenman I, Basso K, Wiggins C, Stolovitzky G, Favera R, Califano A (2006) Aracne: an algorithm for the reconstruction of gene regulatory networks in a mammalian cellular context. BMC Bioinformatics 7(Suppl 1):S7

    Article  PubMed Central  PubMed  Google Scholar 

  • Noman N, Iba H (2006) On the reconstruction of gene regulatory networks from noisy expression profiles. In: IEEE congress on evolutionary computation (IEEE CEC), pp 2543–2550

  • Noman N, Iba H (2007) Inferring gene regulatory networks using differential evolution with local search heuristics. IEEE Trans Comput Biol Bioinformatics 4:634–647

    Article  CAS  Google Scholar 

  • Savageau M (1976) Biochemical systems analysis. A study of function and design in molecular biology. Addison-Wesley Publishing Company, Massachusetts

    Google Scholar 

  • Sheridan P, Kamimura T, Shimodaira H (2010) A scale-free structure prior for graphical models with applications in functional genomics. PLoS ONE 5(11):e13580, 11

    Google Scholar 

  • Shyu A-B, Wilkinson MF, van Hoof A (2008) Messenger rna regulation: to translate or to degrade. EMBO J 27(3):471–481. doi:10.1038/sj.emboj.7601977

    Google Scholar 

  • Storn R, Price KV (1997) Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces. J Glob Optimization 11:341–359

    Article  Google Scholar 

  • Voit EO, Almeida J (2004) Decoupling dynamical systems for pathway identification from metabolic profiles. Bioinformatics 20:1670–1681

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Liu G, Sun Y, Wu H (2009) Robust stability of stochastic delayed genetic regulatory networks. Cogn Neurodyn 3(3):271–280

    Article  PubMed Central  PubMed  Google Scholar 

  • Ye Q, Cui B (2010) Mean square exponential and robust stability of stochastic discrete-time genetic regulatory networks with uncertainties. Cogn Neurodyn 4(2):165–176

    Article  PubMed Central  PubMed  Google Scholar 

  • Yu J, Smith VA, Wang PP, Hartemink AJ, Jarvis ED (2004) Advances to bayesian network inference for generating causal networks from observational biological data. Bioinformatics 20:3594–3603

    Article  CAS  PubMed  Google Scholar 

  • Zoppoli P, Morganella S, Ceccarelli M (2010) Timedelay-aracne: reverse engineering of gene networks from time-course data by an information theoretic approach. BMC Bioinformatics 11(1):154

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work is supported in part by NICTA (National Information and Communication Technology Australia) research in Systems Biology flagship program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahsan Raja Chowdhury.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chowdhury, A.R., Chetty, M. & Vinh, N.X. Evaluating influence of microRNA in reconstructing gene regulatory networks. Cogn Neurodyn 8, 251–259 (2014). https://doi.org/10.1007/s11571-013-9265-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11571-013-9265-x

Keywords

Navigation