Skip to main content

The phase response of the cortical slow oscillation

Abstract

Cortical slow oscillations occur in the mammalian brain during deep sleep and have been shown to contribute to memory consolidation, an effect that can be enhanced by electrical stimulation. As the precise underlying working mechanisms are not known it is desired to develop and analyze computational models of slow oscillations and to study the response to electrical stimuli. In this paper we employ the conductance based model of Compte et al. (J Neurophysiol 89:2707–2725, 2003) to study the effect of electrical stimulation. The population response to electrical stimulation depends on the timing of the stimulus with respect to the state of the slow oscillation. First, we reproduce the experimental results of electrical stimulation in ferret brain slices by Shu et al. (Nature 423:288–293, 2003) from the conductance based model. We then numerically obtain the phase response curve for the conductance based network model to quantify the network’s response to weak stimuli. Our results agree with experiments in vivo and in vitro that show that sensitivity to stimulation is weaker in the up than in the down state. However, we also find that within the up state stimulation leads to a shortening of the up state, or phase advance, whereas during the up–down transition a prolongation of up states is possible, resulting in a phase delay. Finally, we compute the phase response curve for the simple mean-field model by Ngo et al. (EPL Europhys Lett 89:68002, 2010) and find that the qualitative shape of the PRC is preserved, despite its different mechanism for the generation of slow oscillations.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  • Achuthan S, Butera RJ, Canavier CC (2010) Synaptic and intrinsic determinants of the phase resetting curve for weak coupling. J Comput Neurosci 30(2):373–390

    Article  PubMed  Google Scholar 

  • Akam T, Oren I, Mantoan L, Ferenczi E, Kullmann DM (2012) Oscillatory dynamics in the hippocampus support dentate gyrus-CA3 coupling. Nat Neurosci 15(5):763–768

    Article  PubMed  CAS  Google Scholar 

  • Amzica F, Steriade M (1998) Electrophysiological correlates of sleep delta waves. Electroencephalogr Clin Neurophysiol 107(2):69–83

    Article  PubMed  CAS  Google Scholar 

  • Biktasheva IV, Barkley D, Biktashev VN, Foulkes AJ (2010) Computation of the drift velocity of spiral waves using response functions. Phys Rev E 81(6):066202

    Article  CAS  Google Scholar 

  • Brunel N (2000) Dynamics of sparsely connected networks of excitatory and inhibitory spiking neurons. J Comput Neurosci 8(3):183–208

    Article  PubMed  CAS  Google Scholar 

  • Clemens Z, Mölle M, Erőss L, Barsi P, Halász P, Born J (2007) Temporal coupling of parahippocampal ripples, sleep spindles and slow oscillations in humans. Brain 130:2868–2878

    Article  PubMed  Google Scholar 

  • Compte A, Sanchez-Vives MV, McCormick DA, Wang X (2003) Cellular and network mechanisms of slow oscillatory activity (<1 hz) and wave propagations in a cortical network model. J Neurophysiol 89(5):2707–2725

    Article  PubMed  Google Scholar 

  • Contreras D, Steriade M (1995) Cellular basis of EEG slow rhythms: a study of dynamic corticothalamic relationships. J Neurosci 15(1):604

    PubMed  CAS  Google Scholar 

  • Deco G, Mart D, Ledberg A, Reig R, Sanchez Vives MV (2009) Effective reduced Diffusion-Models: a data driven approach to the analysis of neuronal dynamics. PLoS Comput Biol 5(12):e1000587

    Article  PubMed  Google Scholar 

  • Diekelmann S, Born J (2010) The memory function of sleep. Nat Rev Neurosci 11(2):114–126

    PubMed  CAS  Google Scholar 

  • Ermentrout B (2002) Simulating, analyzing, and animating dynamical systems. SIAM, Philadelphia

    Book  Google Scholar 

  • Ermentrout B, Terman D (2010) Mathematical foundations of neuroscience. Springer, Berlin

    Book  Google Scholar 

  • Fröhlich F, McCormick DA (2010) Endogenous electric fields may guide neocortical network activity. Neuron 67(1):129–143

    Article  PubMed  Google Scholar 

  • Granada A, Hennig R, Ronacher B, Kramer A, Herzel H (2009) Phase response curves: elucidating the dynamics of coupled oscillators. In: Michael L. Johnson and Ludwig Brand (eds) Methods in enzymology, vol 454. Elsevier, pp 1–27

  • Grannan ER, Kleinfeld D, Sompolinsky H (1993) Stimulus-dependent synchronization of neuronal assemblies. Neural Comput 5(4):550–569

    Article  Google Scholar 

  • Gray CM, Konig P, Engel AK, Singer W (1989) Oscillatory responses in cat visual cortex exhibit inter-columnar synchronization which reflects global stimulus properties. Nature 338(6213):334–337

    Article  PubMed  CAS  Google Scholar 

  • Hájos N, Palhalmi J, Mann EO, Németh B, Paulsen O, Freund TF (2004) Spike timing of distinct types of GABAergic interneuron during hippocampal gamma oscillations in vitro. J Neurosci 24(41):9127–9137

    Article  PubMed  Google Scholar 

  • Izhikevich EM (2000) Phase equations for relaxation oscillators. SIAM J Appl Math 60(5):1789–1804

    Article  Google Scholar 

  • Jirsa V (2008) Dispersion and time delay effects in synchronized spike-burst networks. Cogn Neurodyn 2(1):29–38

    Article  PubMed  Google Scholar 

  • Ko TW, Ermentrout GB (2009) Phase-response curves of coupled oscillators. Phys Rev E 79:016–211

    Article  Google Scholar 

  • Kori H, Kawamura Y, Nakao H, Arai K, Kuramoto Y (2009) Collective-phase description of coupled oscillators with general network structure. Phys Rev E 80:036207

    Article  Google Scholar 

  • Kuramoto Y (2003) Chemical oscillations, waves, and turbulence. Chemistry series, Dover Publications (originally published: Springer Berlin, 1984)

  • Levnajić Z, Pikovsky A (2010) Phase resetting of collective rhythm in ensembles of oscillators. Phys Rev E 82:056202

    Article  Google Scholar 

  • MacLean JN, Watson BO, Aaron GB, Yuste R (2005) Internal dynamics determine the cortical response to thalamic stimulation. Neuron 48(5):811–823

    Article  PubMed  CAS  Google Scholar 

  • Marshall L, Mölle M, Hallschmid M, Born J (2004) Transcranial direct current stimulation during sleep improves declarative memory. J Neurosci 24(44):9985–9992

    Article  PubMed  CAS  Google Scholar 

  • Marshall L, Helgadottir H, Mölle M, Born J (2006) Boosting slow oscillations during sleep potentiates memory. Nature 444(7119):610–613

    Article  PubMed  CAS  Google Scholar 

  • Massimini M (2002) EEG slow (1 hz) waves are associated with nonstationarity of Thalamo–Cortical sensory processing in the sleeping human. J Neurophysiol 89:1205–1213

    Article  Google Scholar 

  • Massimini M, Huber R, Ferrarelli F, Hill S, Tononi G (2004) The sleep slow oscillation as a traveling wave. J Neurosci 24(31):6862

    Article  PubMed  CAS  Google Scholar 

  • Massimini M, Ferrarelli F, Esser SK, Riedner BA, Huber R, Murphy M, Peterson MJ, Tononi G (2007) Triggering sleep slow waves by transcranial magnetic stimulation. Proc Natl Acad Sci USA 104(20):8496–8501

    Article  PubMed  CAS  Google Scholar 

  • Mattia M, Sanchez-Vives M (2012) Exploring the spectrum of dynamical regimes and timescales in spontaneous cortical activity. Cogn Neurodyn 6(3):239–250

    Google Scholar 

  • Mayer J, Schuster HG, Claussen JC, Mölle M (2007) Corticothalamic projections control synchronization in locally coupled bistable thalamic oscillators. Phys Rev Lett 99(6):068102

    Article  PubMed  Google Scholar 

  • Mejias JF, Kappen HJ, Torres JJ (2010) Irregular dynamics in up and down cortical states. PLoS One 5(11):e13651

    Article  PubMed  Google Scholar 

  • Mölle M, Marshall L, Gais S, Born J (2002) Grouping of spindle activity during slow oscillations in human non-rapid eye movement sleep. J Neurosci 22(24):10941–10947

    PubMed  Google Scholar 

  • Ngo HV, Köhler J, Mayer J, Claussen JC, Schuster HG (2010) Triggering up states in all-to-all coupled neurons. EPL Europhys Lett 89(6):68002

    Article  Google Scholar 

  • Perez Velazquez JL, Galán RF, Dominguez LG, Leshchenko Y, Lo S, Belkas J, Erra RG (2007) Phase response curves in the characterization of epileptiform activity. Phys Rev E 76:061912

    Article  CAS  Google Scholar 

  • Petersen CC, Hahn TT, Mehta M, Grinvald A, Sakmann B (2003) Interaction of sensory responses with spontaneous depolarization in layer ii/iii barrel cortex. Proc Natl Acad Sci USA 100(23):13638

    Google Scholar 

  • Peyrache A, Khamassi M, Benchenane K, Wiener SI, Battaglia FP (2009) Replay of rule-learning related neural patterns in the prefrontal cortex during sleep. Nat Neurosci 12(7):919–926

    Article  PubMed  CAS  Google Scholar 

  • Sanchez-Vives MV, McCormick DA (2000) Cellular and network mechanisms of rhythmic recurrent activity in neocortex. Nat Neurosci 3(10):1027–1034

    Article  PubMed  CAS  Google Scholar 

  • Sanchez-Vives MV, Descalzo VF, Reig R, Figueroa NA, Compte A, Gallego R (2008) Rhythmic spontaneous activity in the piriform cortex. Cereb Cortex 18(5):1179

    Article  PubMed  Google Scholar 

  • Sanchez-Vives MV, Mattia M, Compte A, Perez-Zabalza M, Winograd M, Descalzo VF, Reig R (2010) Inhibitory modulation of cortical up states. J Neurophysiol 104(3):1314–1324

    Article  PubMed  Google Scholar 

  • Seamari Y, Narvez JA, Vico FJ, Lobo D, Sanchez-Vives MV (2007) Robust off- and online separation of intracellularly recorded up and down cortical states. PLoS One 2(9):e888

    Article  PubMed  Google Scholar 

  • Shu Y, Hasenstaub A, McCormick DA (2003) Turning on and off recurrent balanced cortical activity. Nature 423(6937):288–293

    Article  PubMed  CAS  Google Scholar 

  • Somers D, Kopell N (1995) Waves and synchrony in networks of oscillators of relaxation and non-relaxation type. Physica D 89(1–2):169–183

    Article  Google Scholar 

  • Stickgold R (2005) Sleep-dependent memory consolidation. Nature 437(7063):1272–1278

    Article  PubMed  CAS  Google Scholar 

  • Tass PA (1999) Phase resetting in medicine and biology: stochastic modelling and data analysis. Springer, Berlin

    Google Scholar 

  • Tsubo Y, Takada M, Reyes AD, Fukai T (2007) Layer and frequency dependencies of phase response properties of pyramidal neurons in rat motor cortex. Eur J Neurosci 25(11):3429–3441

    Article  PubMed  Google Scholar 

  • Várkonyi PL, Holmes P (2008) On synchronization and traveling waves in chains of relaxation oscillators with an application to lamprey cpg. SIAM J Appl Dyn Syst 7:766–794

    Article  Google Scholar 

  • Winfree AT (2001) The geometry of biological time, 2nd edn. Springer, Berlin

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Deut-sche Forschungsgemeinschaft (DFG) within SFB 654 “Plasticity & Sleep” and the Graduate School for Computing in Medicine and Life Sciences funded by Germany’s Excellence Initiative [DFG GSC 235/1].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arne Weigenand.

Appendix: The network model

Appendix: The network model

In the original model by (Compte et al. 2003) 1,024 pyramidal neurons (see Table 1) and 256 interneurons (see Table 2) are distributed equidistantly along a line of 5 mm. The probability that two neurons, separated by a distance x, are connected is \(P(x)=\left(\frac{1} {\sqrt{2\pi \sigma^2}}\right)\exp(-x^2/2\sigma^2)\) with a synaptic footprint of \(\sigma = 250\,\upmu\hbox{m}\) for excitatory connections and \(\sigma=125\,\upmu\hbox{m}\) for inhibitory connections. The equations governing the synapses can be found in Table 3. Each neuron makes 20 ± 5 connections to other neurons. In our simulations we used 256 pyramidal neurons and 64 interneurons. The network length and synaptic footprint was linearly scaled to preserve the properties of the original model. We applied periodic boundary conditions.

Table 1 Regular-spiking pyramidal neurons
Table 2 Fast-spiking inhibitory interneurons
Table 3 Synapses

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Weigenand, A., Martinetz, T. & Claussen, J.C. The phase response of the cortical slow oscillation. Cogn Neurodyn 6, 367–375 (2012). https://doi.org/10.1007/s11571-012-9207-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11571-012-9207-z

Keywords