Skip to main content

Advertisement

Log in

Gap junctions modulate seizures in a mean-field model of general anesthesia for the cortex

  • Research Article
  • Published:
Cognitive Neurodynamics Aims and scope Submit manuscript

Abstract

During slow-wave sleep, general anesthesia, and generalized seizures, there is an absence of consciousness. These states are characterized by low-frequency large-amplitude traveling waves in scalp electroencephalogram. Therefore the oscillatory state might be an indication of failure to form coherent neuronal assemblies necessary for consciousness. A generalized seizure event is a pathological brain state that is the clearest manifestation of waves of synchronized neuronal activity. Since gap junctions provide a direct electrical connection between adjoining neurons, thus enhancing synchronous behavior, reducing gap-junction conductance should suppress seizures; however there is no clear experimental evidence for this. Here we report theoretical predictions for a physiologically-based cortical model that describes the general anesthetic phase transition from consciousness to coma, and includes both chemical synaptic and direct electrotonic synapses. The model dynamics exhibits both Hopf (temporal) and Turing (spatial) instabilities; the Hopf instability corresponds to the slow (≲8 Hz) oscillatory states similar to those seen in slow-wave sleep, general anesthesia, and seizures. We argue that a delicately balanced interplay between Hopf and Turing modes provides a canonical mechanism for the default non-cognitive rest state of the brain. We show that the Turing mode, set by gap-junction diffusion, is generally protective against entering oscillatory modes; and that weakening the Turing mode by reducing gap conduction can release an uncontrolled Hopf oscillation and hence an increased propensity for seizure and simultaneously an increased sensitivity to GABAergic anesthesia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. We could equally well have chosen to increase the level of subcortical drive entering the cortex, or we could have scaled ρ e , the strength of the excitatory postsynaptic potential (EPSP); however, neither of these alternatives substantially alters the qualitative model predictions reported here.

Abbreviations

BOLD:

Blood oxygen level-dependent signal

EEG:

Electroencephalogram

E(I)PSP:

Excitatory (inhibitory) postsynaptic potential

MEG:

Magnetoencephalogram

References

  • Amor F, Baillet S, Navarro V, Adam C, Martinerie J, Quyen MLV (2009) Cortical local and long-range synchronization interplay in human absence seizure initiation. NeuroImage 45(3):950–962

    Article  PubMed  Google Scholar 

  • Beck P, Odle A, Wallace-Huitt T, Skinner RD, Garcia-Rill E (2008) Modafinil increases arousal determined by P13 potential amplitude: an effect blocked by gap junction antagonists. Sleep 31(12):1647–1654

    PubMed  Google Scholar 

  • Bennett MV, Zukin RS (2004) Electrical coupling and neuronal synchronization in the mammalian brain. Neuron 41:495–511

    Article  PubMed  CAS  Google Scholar 

  • Bojak I, Liley DTJ (2005) Modeling the effects of anesthesia on the electroencephalogram. Phys Rev E 71:041902

    Article  CAS  Google Scholar 

  • Bullock TH, Bennett MVL, Johnston D, Josephson R, Marder E, Fields RD (2005) Neuroscience. The neuron doctrine, redux. Science 310(5749):791–793. doi:10.1126/science.1114394

    Article  PubMed  CAS  Google Scholar 

  • Carlen PL, Skinner F, Zhang L, Naus C, Kushnir M, Perez Velazquez JL (2000) The role of gap junctions in seizures. Brain Res Rev 32(1):235–241. doi:10.1016/S0165-0173(99)00084-3

    Article  PubMed  CAS  Google Scholar 

  • Chávez M, LeVan Quyen M, Navarro V, Baulac M, Martinerie J (2003) Spatio-temporal dynamics prior to neocortical seizures: amplitude versus phase couplings. IEEE Trans Biomed Eng 50(5):571–583. doi:10.1109/TBME.2003.810696

    Article  PubMed  Google Scholar 

  • Connors BW, Long MA (2004) Electrical synapses in the mammalian brain. Annu Rev Neurosci 27:393–418

    Article  PubMed  CAS  Google Scholar 

  • Deco G, Jirsa V, McIntosh AR, Sporns O, Kötter R (2009) Key role of coupling, delay, and noise in resting brain fluctuations. Proc Natl Acad Sci USA 106(25):10302–10307. doi:10.1073/pnas.0901831106

    Article  PubMed  CAS  Google Scholar 

  • Dudek FE (2002) Gap junctions and fast oscillations: a role in seizures and epileptogenesis?. Epilepsy Curr 2(4):133–136. doi:10.1046/j.1535-7597.2002.t01-1-00051.x

    Article  PubMed  Google Scholar 

  • Fox MD, Snyder AZ, Vincent JL, Corbetta M, van Essen DC, Raichle ME (2005) The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc Natl Acad Sci USA 102(27):9673–9678. doi:10.1073/pnas.0504136102

    Article  PubMed  CAS  Google Scholar 

  • Fukuda T, Kosaka T, Singer W, Galuske RAW (2006) Gap junctions among dendrites of cortical GABAergic neurons establish a dense and widespread intercolumnar network. J Neurosci 26:3434–3443

    Article  PubMed  CAS  Google Scholar 

  • Gajda Z, Gyengesi E, Hermesz E, Ali KS, Szente M (2003) Involvement of gap junctions in the manifestation and control of the duration of seizures in rats in vivo. Epilepsia 44(12):1596–1600

    Article  PubMed  CAS  Google Scholar 

  • Gajda Z, Szupera Z, Blazso G, Szente M (2005) Quinine, a blocker of neuronal Cx36 channels, suppresses seizure activity in the rat neocortex in vivo. Epilepsia 56:1581–1591

    Article  Google Scholar 

  • Ghosh A, Rho Y, McIntosh AR, Kötter R, Jirsa VK (2008) Noise during rest enables the exploration of the brain’s dynamic repertoire. PLoS Comput Biol 4(10):e1000196. doi:10.1371/journal.pcbi.1000196

    Article  PubMed  Google Scholar 

  • Honey CJ, Kötter R, Breakspear M, Sporns O (2007) Network structure of cerebral cortex shapes functional connectivity on multiple time scales. Proc Natl Acad Sci USA 104(24):10240–10245. doi:10.1073/pnas.0701519104

    Article  PubMed  CAS  Google Scholar 

  • Hutt A, Longtin A (2010) Effects of the anesthetic agent propofol on neural populations. Cogn Neurodyn 4(1):37–59. doi:10.1007/s11571-009-9092-2

    Article  Google Scholar 

  • Jacobson GM, Voss LJ, Melin SM, Mason JP, Cursons RT, Steyn-Ross DA et al (2010) Connexin36 knockout mice display increased sensitivity to pentylenetetrazol-induced seizure-like behaviors. Brain Res 1360:198–204. doi:10.1016/j.brainres.2010.09.006

    Article  PubMed  CAS  Google Scholar 

  • Jacobson GM, Voss LJ, Melin SM, Cursons RTM, Sleigh JW (2011) The role of connexin36 gap junctions in modulating the hypnotic effects of isoflurane and propofol in mice. Anaesthesia 66(5):361–367. doi:10.1111/j.1365-2044.2011.06658.x

    Article  PubMed  CAS  Google Scholar 

  • Jahromi SS, Wentlandt K, Piran S, Carlen PL (2002) Anticonvulsant actions of gap junctional blockers in an in vitro seizure model. J Neurophysiol 88(4):1893–1902

    PubMed  CAS  Google Scholar 

  • Juszczak GR, Swiergiel AH (2009) Properties of gap junction blockers and their behavioural, cognitive and electrophysiological effects: animal and human studies. Prog Neuropsychopharmacol Biol Psychiatry 33:181–198

    Article  PubMed  CAS  Google Scholar 

  • Kitamura A, Marszalec W, Yeh JZ, Narahashi T (2002) Effects of halothane and propofol on excitatory and inhibitory synaptic transmission in rat cortical neurons. J Pharmacol 304(1):162–171

    Google Scholar 

  • Kramer MA, Kirsch HE, Szeri AJ (2005) Pathological pattern formation and cortical propagation of epileptic seizures. J R Soc Lond Interface 2:113–207. doi:10.1098/rsif.2004.0028

    Article  Google Scholar 

  • Liley DTJ, Bojak I (2005) Understanding the transition to seizure by modeling the epileptiform activity of general anesthetic agents. Clin Neurophysiol 22(5):300–313

    CAS  Google Scholar 

  • Mantini D, Perrucci MG, Del Gratta C, Romani GL, Corbetta M (2007) Electrophysiological signatures of resting state networks in the human brain. Proc Natl Acad Sci USA 104(32):13170–13175. doi:10.1073/pnas.0700668104

    Article  PubMed  CAS  Google Scholar 

  • Mormann F, Lehnertz K, David P, Elger CE (2000) Mean phase coherence as a measure for phase synchronization and its application to the EEG of epilepsy patients. Physica D 144:358–369

    Article  Google Scholar 

  • Mormann F, Kreuz T, Andrzejak RG, David P, Lehnertz K, Elger CE (2003) Epileptic seizures are preceded by a decrease in synchronization. Epilepsy Res 53(3):173–185

    Article  PubMed  Google Scholar 

  • Nilsen KE, Kelso AR, Cock HR (2006) Antiepileptic effect of gap-junction blockers in a rat model of refractory focal cortical epilepsy. Epilepsia 47(7):1169–1175

    Article  PubMed  CAS  Google Scholar 

  • Pais I, Hormuzdi SG, Monyer H, Traub RD, Wood IC, Buhl EH et al (2003) Sharp wave-like activity in the hippocampus in vitro in mice lacking the gap junction protein connexin 36. J Neurophysiol 89:2046–2054

    Article  PubMed  CAS  Google Scholar 

  • Perez Velazquez JL, Carlen PL (2000) Gap junctions, synchrony and seizures. Trends Neurosci 23(2):68–74. doi:10.1016/S0166-2236(99)01497-6

    Article  PubMed  CAS  Google Scholar 

  • Raichle ME, MacLeod AM, Snyder AZ, Powers WJ, Gusnard DA, Shulman GL (2001) A default mode of brain function. Proc Natl Acad Sci USA 98:676–682. doi:10.1073/pnas.98.2.676

    Article  PubMed  CAS  Google Scholar 

  • Robinson PA, Rennie CJ, Wright JJ (1997) Propagation and stability of waves of electrical activity in the cerebral cortex. Phys Rev E 56:826–840

    Article  CAS  Google Scholar 

  • Robinson PA, Rennie CJ, Rowe DL (2002) Dynamics of large-scale brain activity in normal arousal states and epileptic seizures. Phys Rev E 65(4):041924

    Article  CAS  Google Scholar 

  • Shinohara K, Hiruma H, Funabashi T, Kimura F (2000) Gabaergic modulation of gap junction communication in slice cultures of the rat suprachiasmatic nucleus. Neurosci 96(3):591–596

    Article  CAS  Google Scholar 

  • Steyn-Ross ML, Steyn-Ross DA, Sleigh JW, Liley DTJ (1999) Theoretical electroencephalogram stationary spectrum for a white-noise-driven cortex: evidence for a general anesthetic-induced phase transition. Phys Rev E 60:7299–7311

    Article  CAS  Google Scholar 

  • Steyn-Ross DA, Steyn-Ross ML, Wilcocks LC, Sleigh JW (2001) Toward a theory of the general anesthetic-induced phase transition of the cerebral cortex: II. Stochastic numerical simulations, spectral entropy, and correlations. Phys Rev E 64:011918

    Article  CAS  Google Scholar 

  • Steyn-Ross ML, Steyn-Ross DA, Sleigh JW, Wilcocks LC (2001) Toward a theory of the general anesthetic-induced phase transition of the cerebral cortex: I. A statistical mechanics analogy. Phys Rev E 64:011917

    Article  CAS  Google Scholar 

  • Steyn-Ross ML, Steyn-Ross DA, Sleigh JW, Whiting DR (2003) Theoretical predictions for spatial covariance of the EEG signal during the anesthetic-induced phase transition: Increased correlation length and emergence of self-organization. Phys Rev E 68:021902

    Article  Google Scholar 

  • Steyn-Ross ML, Steyn-Ross DA, Sleigh JW (2004) Modelling general anaesthesia as a first-order phase transition in the cortex. Prog Biophys Mol Biol 85:369–385

    Article  PubMed  CAS  Google Scholar 

  • Steyn-Ross DA, Steyn-Ross ML, Wilson MT, Sleigh JW (2006) White-noise susceptibility and critical slowing in neurons near spiking threshold. Phys Rev E 74:051920

    Article  CAS  Google Scholar 

  • Steyn-Ross ML, Steyn-Ross DA, Wilson MT, Sleigh JW (2007) Gap junctions mediate large-scale Turing structures in a mean-field cortex driven by subcortical noise. Phys Rev E 76:011916. doi:10.1103/PhysRevE.76.011916

    Article  Google Scholar 

  • Steyn-Ross ML, Steyn-Ross DA, Wilson MT, Sleigh JW (2009) Modeling brain activation patterns for the default and cognitive states. NeuroImage 45:298–311. doi:10.1016/j.neuroimage.2008.11.036

    Article  PubMed  Google Scholar 

  • Steyn-Ross ML, Steyn-Ross DA, Sleigh JW, Wilson MT (2010) A mechanism for ultra-slow oscillations in the cortical default network. Bull Math Biol 73(2):398–416. doi:10.1007/s11538-010-9565-9

    Article  PubMed  Google Scholar 

  • Traub RD, Whittington MA, Buhl EH, LeBeau FE, Bibbig A, Boyd S et al (2001) A possible role for gap junctions in generation of very fast EEG oscillations preceding the onset of, and perhaps initiating, seizures. Epilepsia 42(2):153–170

    Article  PubMed  CAS  Google Scholar 

  • Turing AM (1952) The chemical basis of morphogenesis. Philos Trans R Soc London 237:37–72

    Article  Google Scholar 

  • Voss LJ, Jacobson G, Sleigh JW, Steyn-Ross DA, Steyn-Ross ML (2009) Excitatory effects of gap junction blockers on cerebral cortex seizure-like activity in rats and mice. Epilepsia 50(8):1971–1978. doi:10.1111/j.1528-1167.2009.02087.x

    Article  PubMed  CAS  Google Scholar 

  • Wentlandt K, Samoilova M, Carlen PL, El Beheiry H (2006) General anesthetics inhibit gap junction communication in cultured organotypic hippocampal slices. Anaesth Analg 102(6):1692–1698. doi:10.1213/01.ane.0000202472.41103.78

    Article  Google Scholar 

  • Wilson MT, Sleigh JW, Steyn-Ross DA, Steyn-Ross ML (2006) General anesthetic-induced seizures can be explained by a mean-field model of cortical dynamics. Anesthesiology 104:588–593

    Article  PubMed  Google Scholar 

  • Yang L, Ling DSF (2007) Carbenoxolone modifies spontaneous inhibitory and excitatory synaptic transmission in rat somatosensory cortex. Neurosci Lett 416:221–226

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Royal Society of New Zealand Marsden Fund, contract 07-UOW-037.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Alistair Steyn-Ross.

Appendix

Appendix

Phase coherence calculations for Figs. 2 and 3

Consider a (real) time-series X(t). Its Hilbert transform is a complex time-series known as the analytic signal; by computing the four-quadrant arctangent of the ratio of its imaginary and real parts we obtain a time-series for ϕ(t), the instantaneous phase angle. The phase similarity between two time-series X(t) and Y(t) can be determined by examining the time-series of their phase differences \(\Updelta \phi(t) = \phi_X(t) - \phi_Y(t). \) If X and Y are tightly phase-coupled, then plotting \(e^{i\Updelta \phi}, \) the difference signal mapped to the unit circle, will give a tightly clustered angular distribution of phasors, whereas if X and Y have a relative phase relation that is incoherent, the difference phasors will be randomly distributed around the complex circle.

We define the mean phase coherence R of the X and Y time-series as the length of the time-averaged phasor for the angular distribution of phase differences, \(R = |\langle e^{i\Updelta \phi}\rangle|. \) If X and Y are tightly phase coupled, then R ≈ 1, and if they are uncoupled, R ≈ 0.

A Matlab implementation of the phase coherence algorithm reads as follows:

Let XQ e (x 0, t) and YQ e (x k t) be a pair of cortical firing-rate time-series belonging respectively to rows 0 and k of a given Fig. 2c strip-chart. The x-axis separation between these two rows is \(\Updelta x = k\delta x, \) and the mean phase coherence, \(R(\Updelta x), \) of their time-series gives a measure of the degree to which cortical activity is correlated for an electrode pair separated by distance \(\Updelta x. \) We fix the x 0 reference position to be close to the center of the grid, and vary the position of the second electrode x k with k = 0,  ±1,  ±2, … corresponding to stepped increases in electrode separation ranging from \(\Updelta x = 0\) to 12.5 cm. In this way we are able to construct the Fig. 2e graphs showing the variation of phase coherence with distance.

In these calculations, we took care to skip over first 1 s of recording to allow time for the initial transients to settle out. We used a 5-s recording window with 1-s overlap, and followed Mormann et al. (2000) in applying a Hanning window, retaining only the middle 80% of each segment to minimize edge distortions from the Hilbert transform. Because we expect phase symmetry for rows ±k symmetrically displaced either side of the x 0 reference position, we used the standard deviation in their phase coherence values to estimate the error bars at separation \(\Updelta x = k\delta x. \)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Steyn-Ross, M.L., Steyn-Ross, D.A. & Sleigh, J.W. Gap junctions modulate seizures in a mean-field model of general anesthesia for the cortex. Cogn Neurodyn 6, 215–225 (2012). https://doi.org/10.1007/s11571-012-9194-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11571-012-9194-0

Keywords

Navigation