Skip to main content
Log in

Neurofunctional model of large-scale correlates of selective attention governed by stimulus-novelty

  • Research Article
  • Published:
Cognitive Neurodynamics Aims and scope Submit manuscript

Abstract

Multiple studies demonstrate the influence of the limbic system on the processing of sensory events and attentional guidance. But the mechanisms involved therein are yet not entirely clear. The close connection of handling incoming sensory information and memory retrieval, like in the case of habituation towards insignificant stimuli, suggests a crucial impact of the hippocampus on the direction of attention. In this paper we thus present a neurofunctional forward model of a hippocampal comparator function based on the theory of theta-regulated attention. Subsequently we integrated this comparator model into a multiscale framework for the simulation of evoked responses. The results of our simulations were compared to experimental data on electroencephalographic (EEG) correlates of habituation towards familiar stimuli using time-scale analysis. In consequence we are able to present additional evidence for limbic influences on the direction of attention driven by stimulus novelty and a systems neuroscience framework for the statements given in the theta-regulated attention hypothesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abry P (1997) Ondelettes et turbulence. Multirésolutions algorithmes, de décomposition, invariance d’échelles. Diderot Editeur, Paris

    Google Scholar 

  • Bikbaev A, Manahan-Vaughan D (2007) Hippocampal network activity is transiently altered by induction of long-term potentiation in the dentate gyrus of freely behaving rats. Front Behav Neurosci 1:7

    Article  PubMed  Google Scholar 

  • Bregman AS (1999) Auditory scene analysis. MIT Press, Cambridge

    Google Scholar 

  • Carlsson M, Carlsson A (1990) Schizophrenia: a subcortical neurotransmitter imbalance syndrome. Schizophr Bull

  • Cohen RM, Semple WE, Gross M, Pickar D (1987) Dysfunction in a prefrontal substrate of sustained attention in schizophrenia. Life Sci 40(20):2031–2039

    Article  PubMed  CAS  Google Scholar 

  • Crick F (1984) Function of the thalamic reticular nucleus: the searchlight hypothesis. Proc Natl Acad Sc USA

  • Destexhe A (2000) Modelling corticothalamic feedback and gating of the thalamus by the cerebral cortex. J Physiol

  • Dwyer TA, Servatius RJ, Pang KC (2007) Noncholinergic lesions of the medial septum impair sequential learning of different spatial locations. J Neurosci 27:299–303

    Article  PubMed  CAS  Google Scholar 

  • Freeman WJ (1991) Induced rhythms of the brain. Springer, New York

    Google Scholar 

  • Glickman SE, Higgins TJ, Isaacson RL (1970) Some effects of hippocampal lesions on the behavior of mongolian gerbils. Physiol Behav 5(8):931–938

    Article  PubMed  CAS  Google Scholar 

  • Grace AA (2000) Gating of information flow within the limbic system and the pathophysiology of schizophrenia. Brain Res. Brain Res Rev 31:330–341

    Article  PubMed  CAS  Google Scholar 

  • Grossberg S, Merrill JW (1992) A neural network model of adaptively timed reinforcement learning and hippocampal dynamics. Brain Res Cogn Brain Res 214:3–38

    Google Scholar 

  • Hasselmo ME (2005) The role of hippocampal regions ca3 and ca1 in matching entorhinal input with retrieval of associations between objects and context: theoretical comment on lee et al. Behav Neurosci 119:342–345

    Article  PubMed  Google Scholar 

  • Hillyard SA, Hink RF, Schwent VL, Picton TW (1973) Electrical signs of selective attention in the human brain. Sci Agric 182:177–180

    CAS  Google Scholar 

  • Hoppensteadt FC (1991) The searchlight hyphotesis. J Math Biol

  • Ikegaya Y, Saito H, Abe K (1996) Dentate gyrus field potentials evoked by stimulation of the basolateral amygdaloid nucleus in anesthetized rats. Brain Res Bull 718:53–60

    CAS  Google Scholar 

  • Jirsa VK, Haken H (1996) Field theory of electromagnetic brain activity. Phys Rev Lett

  • Kim C, Choi H, Kim JK, Chang HK, Park RS, Kang IY (1970) General behavioral activity and its component patterns in hippocampectomized rats. Brain Res Bull 19(3):379–394

    CAS  Google Scholar 

  • Klein A, Sauer T, Jedynak A, Skrandies W (2006) Conventional and wavelet coherence applied to sensory-evoked electrical brain activity. IEE Trans Biomed Eng 53

  • Kryukov VI (2008) The role of the hippocampus in long—term memory: is it a memory store or a comparator. J Integr Neurosci 7:117–184

    Article  PubMed  CAS  Google Scholar 

  • Lachaux J-P, Rodriguez E, Martinerie J, Varela FJ (1999) Measuring the phase synchrony in brain signals. Hum Brain Mapp 8:194–208

    Article  PubMed  CAS  Google Scholar 

  • Lachaux JP, Lutz A, Rudrauf D, Cosmelli D, Quyen MLV, Martinerie J, Varela F (2002) Estimating the time-course of coherence between single-trial brain signals: and introduction to wavelet coherence. Neurophysiol Clinical 32:1–3

    Article  Google Scholar 

  • Lee I, Hunsaker MR, Kesner RP (2005a) The role of hippocampal subregions in detecting spatial novelty. J Neurosci 25:145–153

    Google Scholar 

  • Lee I, Hunsaker MR, Kesner RP (2005b) The role of hippocampal subregions in detecting spatial novelty. J Neurosci 25:145–153

    Google Scholar 

  • Louis AK, Maass P, Rieder A (1997) Wavelets: theory and application. Wiley, Baffins Lane

    Google Scholar 

  • Low YF, Corona-Strauss FI, Adam P, Strauss DJ (2007) Extraction of auditory attention correlates in single sweeps of cortical potentials by maximum entropy paradigms and its application. In: Proceedings of the 3rd international IEEE EMBS conference on neural engineering. Kohala Coast, HI, USA, pp 469–472

  • Mai M, Delb W, Corona-Strauss FI, Bloching M, Strauss DJ (2009) Comparing the habituation of the late auditory potentials to loud and soft sounds. J Physiol Meas 30:141–153

    Article  Google Scholar 

  • Miller RR, Schachtman TR, Matzel LD (1988) Testing response generation rules. J Exp Psychol Anim Behav Process 14:425–429

    Article  PubMed  CAS  Google Scholar 

  • Oades RD, Sartory G (1997) The problems of inattention: methods and interpretations. Behav Brain Res 88:3–10

    Article  PubMed  CAS  Google Scholar 

  • Pribram KH (1986) The hippocampus, vol 4. Plenum Press, New York

    Google Scholar 

  • Roberts WW, Dember WN, Brodwick M (1962) Alternation and exploration in rats with hippocampal lesions. J Comp Physiol Psychol 55:695–700

    Article  PubMed  CAS  Google Scholar 

  • Salzmann E (1992) Importance of the hippocampus and parahippocampus with reference to normal and disordered memory function. Fortschr Neurol Psychiatr 60:163–176

    Article  PubMed  CAS  Google Scholar 

  • Sheth A, Berretta S, Lange N, Eichenbaum H (2007) The amygdala modulates neuronal activation in the hippocampus in response to spatial novelty. Hippocampus 18:169–181

    Article  Google Scholar 

  • Squire LR, Zola-Morgan S (1988) Memory: brain systems and behavior. Trends Neurosci 11:170–175

    Article  PubMed  CAS  Google Scholar 

  • Trenado C, Haab L, Strauss DJ (2007) Modeling neural correlates of auditory attention in evoked potentials using corticothalamic feedback dynamics. In: Proceedings of the 29th conference of the IEEE engineering in medicine and biology society. Lyon, France, pp 4281–4284

  • Trenado C, Haab L, Reith W, Strauss DJ (2009) Biocybernetics of attention and habituation neural correlates in the tinnitus decompensation. J Neurosci Method 178:237–247

    Article  CAS  Google Scholar 

  • Vinogradova OS (2001) Hippocampus as comparator: role of the two input and two output systems of the hippocampus in selection and registration of information. Hippocampus 11:578–598

    Article  PubMed  CAS  Google Scholar 

  • Vollenweider F, Gamma A, Vollenweider-Scherpenhuyzen M (1999) Neural correlates of hallucinogen-induced altered states of conciousness. In: Toward a science of conciousness

  • Wang R, Yu J, Zhang Z (2006) A neural model on cognitive process. Lect Notes Comput Sci 3971:50–559

    Article  Google Scholar 

  • Weese DG, Phillips JM, Brown VJ (1999) The role of the hippocampus in long-term memory: is it a memory store or a comparator?. J Neurosci 19:10135–10139

    PubMed  CAS  Google Scholar 

  • Yi DJ, Chun MM (2005) Attentional modulation of learning-related repetition attenuation effects in human parahippocampal cortex. J Neurosci 25:3593–3600

    Article  PubMed  CAS  Google Scholar 

  • Zhang X, Wang R, Zhang Z, Qu J, Cao J, Jiao X (2010) Dynamic phase synchronization characteristics of variable high-order coupled neuronal oscillator population. Neurocomputing 73:2665–2670

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel J. Strauss.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haab, L., Trenado, C., Mariam, M. et al. Neurofunctional model of large-scale correlates of selective attention governed by stimulus-novelty. Cogn Neurodyn 5, 103–111 (2011). https://doi.org/10.1007/s11571-010-9150-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11571-010-9150-9

Keywords

Navigation