Skip to main content
Log in

Transitory behaviors in diffusively coupled nonlinear oscillators

  • Research Article
  • Published:
Cognitive Neurodynamics Aims and scope Submit manuscript

Abstract

We study collective behaviors of diffusively coupled oscillators which exhibit out-of-phase synchrony for the case of weakly interacting two oscillators. In large populations of such oscillators interacting via one-dimensionally nearest neighbor couplings, there appear various collective behaviors depending on the coupling strength, regardless of the number of oscillators. Among others, we focus on an intermittent behavior consisting of the all-synchronized state, a weakly chaotic state and some sorts of metachronal waves. Here, a metachronal wave means a wave with orderly phase shifts of oscillations. Such phase shifts are produced by the dephasing interaction which produces the out-of-phase synchronized states in two coupled oscillators. We also show that the abovementioned intermittent behavior can be interpreted as in-out intermittency where two saddles on an invariant subspace, the all-synchronized state and one of the metachronal waves play an important role.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Ashwin P, Cova E, Tavakol R (1999) Transverse instability for non-normal parameters. Nonlinearity 12:563–577

    Article  Google Scholar 

  • Benettin G, Galgani L, Giorsilli A, Strelcyn JM (1980a) Lyapunov characteristic exponents for smooth dynamical systems and for hamiltonian systems; a method for computing all of them part 1: theory. Mecannica 15:9–20

    Article  Google Scholar 

  • Benettin G, Galgani L, Giorsilli A, Strelcyn JM (1980b) Lyapunov characteristic exponents for smooth dynamical systems and for hamiltonian systems; a method for computing all of them part 2: numerical application. Mecannica 15:21–30

    Article  Google Scholar 

  • Doedel EJ, Paffenroth RC, Champneys A, Fairgrieve T, Kuznetsov Y, Oldeman B, Sandstede B, Wang X (2002) Auto2000: continuation and bifurcation software for ordinary differential equations with homcont. http://cmvl.cs.concordia.ca/auto

  • Fujii H, Tsuda I (2004) Neocortical gap junction-coupled interneuron systems may induce chaotic behavior itinerant among quasi-attractors exhibiting transient synchrony. Neurocomputing 58–60:151–157

    Article  Google Scholar 

  • Galarreta M, Hestrin S (1999) A network of fast-spiking cells in the neocortex connected by electrical synapses. Nature 402:72–75

    Article  PubMed  CAS  Google Scholar 

  • Gibson JR, Beierlein M, Connors BW (1999) Two networks of electrically coupled inhibitory neurons in neocortex. Nature 402:75–79

    Article  PubMed  CAS  Google Scholar 

  • Gray CM, Koenig P, Engel AK, Singer WO (1992) Synchronization of oscillatory neuronal responses in cat striate cortex: temporal properties. Vis Neurosci 8:337–347

    Article  PubMed  CAS  Google Scholar 

  • Grebogi C, Ott E, Yorke JA (1982) Chaotic attractors in crisis. Phys Rev Lett 48:1507–1510

    Article  Google Scholar 

  • Han SK, Postnov DE (2003) Chaotic bursting as chaotic itinerancy in coupled neural oscillators. Chaos 13:1105–1109

    Article  PubMed  Google Scholar 

  • Han SK, Kurrer C, Kuramoto Y (1995) Dephasing and bursting in coupled neural oscillators. Phys Rev Lett 75:3190–3193

    Article  PubMed  CAS  Google Scholar 

  • Han SK, Kurrer C, Kuramoto Y (1997) Diffusive interaction leading to dephasing of coupled neural oscillators. Int J Bifurcat Chaos 7:869–875

    Article  Google Scholar 

  • Hindmarsh JL, Rose RM (1984) A model of neuronal bursting using three coupled first order differential equations. Proc R Soc B 221:87–102

    Article  CAS  Google Scholar 

  • Ikeda K, Otsuka K, Matsumoto K (1989) Maxwell-bloch turbulence. Prog Theor Phys Suppl 99:295–324

    Article  Google Scholar 

  • Kaneko K (1990) Clustering, coding, switching, hierarchical ordering, and control in network of chaotic elements. Phys D 41:137–172

    Article  Google Scholar 

  • Kaneko K, Tsuda I (eds) (2003) Chaotic itinerancy. Focus issue in chaos 13:926–1164

  • Karantonis A, Nakabayashi S (2001) Phase flow deformations and coupled electrochemical oscillators. Chem Phys Lett 347:133–137

    Article  CAS  Google Scholar 

  • Kenet T, Bibitchkov D, Tsodyks M, Grinvald A, Arieli A (2003) Spontaneously emerging cortical representations of visual attributes. Nature 425:954–956

    Article  PubMed  CAS  Google Scholar 

  • Kuramoto Y (1984) Chemical oscillations, waves, and turbulence. Spinger, Berlin

    Google Scholar 

  • Sherman A, Rinzel J (1992) Rhythmogenetic effects of weak electrotonic coupling in neuronal models. Proc Natl Acad Sci USA 89:2471–2474

    Article  PubMed  CAS  Google Scholar 

  • Shimada I, Nagashima T (1979) A numerical approach to ergodic problem of dissipative dynamical systems. Prog Theor Phys 68:349–358

    Google Scholar 

  • Tsuda I (1991) Chaotic itinerancy as a dynamical basis of hermeneutics in brain and mind. World Futures 32:167–184

    Article  Google Scholar 

  • Tsuda I (1992) Dynamic link of memories—chaotic memory map in nonequilibrium neural networks. Neural Netw 5:313–326

    Article  Google Scholar 

  • Tsuda I, Fujii H, Tadokoro S, Yasuoka T, Yamaguti Y (2004) Chaotic itinerancy as a mechanism of irregular changes between synchronization and desynchronization in a neural network. J Integr Neurosci 3:159–182

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satoru Tadokoro.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tadokoro, S., Yamaguti, Y., Fujii, H. et al. Transitory behaviors in diffusively coupled nonlinear oscillators. Cogn Neurodyn 5, 1–12 (2011). https://doi.org/10.1007/s11571-010-9130-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11571-010-9130-0

Keywords

Navigation