Skip to main content
Log in

A data-driven model of the generation of human EEG based on a spatially distributed stochastic wave equation

  • Research Article
  • Published:
Cognitive Neurodynamics Aims and scope Submit manuscript

Abstract

We discuss a model for the dynamics of the primary current density vector field within the grey matter of human brain. The model is based on a linear damped wave equation, driven by a stochastic term. By employing a realistically shaped average brain model and an estimate of the matrix which maps the primary currents distributed over grey matter to the electric potentials at the surface of the head, the model can be put into relation with recordings of the electroencephalogram (EEG). Through this step it becomes possible to employ EEG recordings for the purpose of estimating the primary current density vector field, i.e. finding a solution of the inverse problem of EEG generation. As a technique for inferring the unobserved high-dimensional primary current density field from EEG data of much lower dimension, a linear state space modelling approach is suggested, based on a generalisation of Kalman filtering, in combination with maximum-likelihood parameter estimation. The resulting algorithm for estimating dynamical solutions of the EEG inverse problem is applied to the task of localising the source of an epileptic spike from a clinical EEG data set; for comparison, we apply to the same task also a non-dynamical standard algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Akaike H (1974) Markovian representation of stochastic processes and its application to the analysis of autoregressive moving average processes. Ann Inst Stat Math 26:363–387

    Article  Google Scholar 

  • Akaike H (1974) A new look at the statistical model identification. IEEE Trans Automat Contr 19:716–723

    Article  Google Scholar 

  • Akaike H (1980) Likelihood and the Bayes procedure. In: Bernardo JM, De Groot MH, Lindley DU, Smith AFM (eds) Bayesian statistics. University Press, Valencia (Spain), pp 141–166

    Google Scholar 

  • Akaike H, Nakagawa T (1988) Statistical analysis and control of dynamic systems. Kluwer, Dordrecht

    Google Scholar 

  • Ary JP, Klein SA, Fender DH (1981) Location of sources of evoked scalp potentials: corrections for skull and scalp thickness. IEEE Trans Biomed Eng 28:447–452

    Article  CAS  PubMed  Google Scholar 

  • Baillet S, Mosher JC, Leahy RM (2001) Electromagnetic brain mapping. IEEE Sign Proc Mag 18:14–30

    Google Scholar 

  • Bollerslev T (1986) Generalized autoregressive conditional heteroskedasticity. J Econ 31:307–327

    Google Scholar 

  • Deistler M (2006) Linear models for multivariate time series. In: Schelter B, Winterhalder M, Timmer J (eds) Handbook of time series analysis. Springer, Berlin, Heidelberg, New York, pp 283–308

    Chapter  Google Scholar 

  • Dennis JE, Schnabel RB (1983) Numerical methods for unconstrained optimization and nonlinear equations. Prentice Hall, Englewood Cliffs

    Google Scholar 

  • Durbin J, Koopman SJ (2001) Time series analysis by state space methods. Oxford University Press, Oxford

    Google Scholar 

  • Engle RF (1982) Autoregressive conditional heteroskedasticity with estimates of the variance of UK inflation. Econometrica 50:987–1008

    Article  Google Scholar 

  • Freeman WJ (2000) Neurodynamics: an exploration in mesoscopic brain dynamics. Springer, Berlin, Heidelberg, New York

    Google Scholar 

  • Galka A, Yamashita O, Ozaki T, Biscay R, Valdés-Sosa PA (2004a) A solution to the dynamical inverse problem of EEG generation using spatiotemporal Kalman filtering. NeuroImage 23:435–453

    Article  PubMed  Google Scholar 

  • Galka A, Yamashita O, Ozaki T (2004b) GARCH modelling of covariance in dynamical estimation of inverse solutions. Phys Lett A 333:261–268

    Article  CAS  Google Scholar 

  • Grave de Peralta Menendez R, Gonzalez Andino SL, Morand S, Michel CM, Landis T (2000) Imaging the electrical activity of the brain: ELECTRA. Hum Brain Map 9:1–12

    Article  Google Scholar 

  • Hansen PC, Jacobsen BH, Mosegaard K (2000) Methods and applications of inversion, volume 92 of lecture notes in earth science. Springer, Berlin

    Google Scholar 

  • Jazwinski AH (1970) stochastic processes and filtering theory. Academic Press, San Diego

    Google Scholar 

  • Kalman RE, Falb PL, Arbib MA (1969) Topics in mathematical system theory. International series in pure and applied mathematics. McGraw-Hill, New York

    Google Scholar 

  • Kitagawa G, Gersch W (1996) Smoothness priors analysis of time series. Springer, Berlin, Heidelberg, New York

    Google Scholar 

  • Lopes da Silva FH, Hoeks A, Smits H, Zetterberg LH (1974) Model of brain rhythmic activity, the alpha-rhythm of the thalamus. Kybernetik 15:27–37

    Article  CAS  Google Scholar 

  • Mazziotta JC, Toga A, Evans AC, Fox P, Lancaster J (1995) A probabilistic atlas of the human brain: theory and rationale for its development. NeuroImage 2:89–101

    Article  CAS  PubMed  Google Scholar 

  • Neumaier A (1998) Solving ill-conditioned and singular linear systems: a tutorial on regularization. SIAM Rev 40:636–666

    Article  Google Scholar 

  • Nunez PL (1981) Electrical fields of the brain. Oxford University Press, New York

    Google Scholar 

  • Pascual-Marqui RD (2002) Standardized low resolution brain electromagnetic tomography (sLORETA): technical details. Methods Find Exp Clin Pharmacol 24D:5–12

    PubMed  Google Scholar 

  • Pascual-Marqui RD, Michel CM, Lehmann D (1994) Low resolution electromagnetic tomography: a new method for localizing electrical activity in the brain. Int J Psychophysiol 18:49–65

    Article  CAS  PubMed  Google Scholar 

  • Riera JJ, Fuentes ME, Valdés PA, Ohárriz Y (1998) EEG-distributed inverse solutions for a spherical head model. Inverse Probl 14:1009–1019

    Article  Google Scholar 

  • Robinson PA, Rennie CJ, Rowe DL (2003) Estimation of multiscale neurophysiologic parameters by electroencephalographic means. Hum Brain Map 23:53–72

    Article  Google Scholar 

  • Schwarz G (1978) Estimating the dimension of a model. Ann Stat 6:461–464

    Article  Google Scholar 

  • Sotero RC, Trujillo-Barreto NJ, Iturria-Medina Y, Carbonell F, Jimenez JC (2007) Realistically coupled neural mass models can generate EEG rhythms. Neural Comput 19:478–512

    Article  PubMed  Google Scholar 

  • Wong KFK, Galka A, Yamashita O, Ozaki T (2006) Modelling non-stationary variance in EEG time series by state space GARCH model. Comput Biol Med 36:1327–1335

    Article  PubMed  Google Scholar 

  • Yamashita O, Galka A, Ozaki T, Biscay R, Valdés-Sosa PA (2004) Recursive penalized least squares solution for the dynamical inverse problem of EEG generation. Hum Brain Map 21:221–235

    Article  Google Scholar 

Download references

Acknowledgments

The work reported in this paper was supported by the Japanese Society for the Promotion of Science (JSPS) through fellowship ID No. P 03059 and grants KIBAN B No. 173000922301 and WAKATE B No. 197002710002. The first author is grateful to Matthew Barton and Peter Robinson for useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Galka.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Galka, A., Ozaki, T., Muhle, H. et al. A data-driven model of the generation of human EEG based on a spatially distributed stochastic wave equation. Cognitive Neurodynamics 2, 101–113 (2008). https://doi.org/10.1007/s11571-008-9049-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11571-008-9049-x

Keywords

Navigation