Skip to main content
Log in

A neural network model of attention-modulated neurodynamics

  • Research Article
  • Published:
Cognitive Neurodynamics Aims and scope Submit manuscript

Abstract

Visual attention appears to modulate cortical neurodynamics and synchronization through various cholinergic mechanisms. In order to study these mechanisms, we have developed a neural network model of visual cortex area V4, based on psychophysical, anatomical and physiological data. With this model, we want to link selective visual information processing to neural circuits within V4, bottom-up sensory input pathways, top-down attention input pathways, and to cholinergic modulation from the prefrontal lobe. We investigate cellular and network mechanisms underlying some recent analytical results from visual attention experimental data. Our model can reproduce the experimental findings that attention to a stimulus causes increased gamma-frequency synchronization in the superficial layers. Computer simulations and STA power analysis also demonstrate different effects of the different cholinergic attention modulation action mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Angelucci A, Bullier J (2003) Reaching beyond the classical receptive field of V1 neurons: horizontal or feedback axon? J Physiol Paris 97:141–154

    Article  PubMed  Google Scholar 

  • Basu S, Liljenström H (2001) Spontaneously active cells induce state transitions in a model of olfactory cortex. BioSystems 63:57–69

    Article  PubMed  CAS  Google Scholar 

  • Blasdel GG, Lund JS, Fitzpatrick D (1985) Intrinsic connections of macaque striate cortex: axonal projections of cells outside lamina 4C. J Neurosci 5(12):3350–3369

    PubMed  CAS  Google Scholar 

  • Börgers C, Epstein S, Kopell NJ (2005) Background gamma rhythmicity and attention in cortical local circuits: a computational study. Proc Natl Acad Sci USA 102(19):7002–7007

    Article  PubMed  Google Scholar 

  • Corchs S, Deco G (2002) Large-scale neural model for visual attention: integration of experimental single-cell and fMRI Data. Cereb Cortex 12:339–348

    Article  PubMed  Google Scholar 

  • Deco G, Rolls ET (2004) A neurodynamical cortical model of visual attention and invariant object recognition. Vision Res 44:621–642

    Article  PubMed  Google Scholar 

  • Fitzpatrick D, Lund JS, Blasdel GG (1985) Intrinsic connections of macaque striate cortex: afferent and efferent connections of lamina 4C. J Neurosci 5(12):3329–3349

    PubMed  CAS  Google Scholar 

  • Fries P, Reynolds JH, Rorie AE, Desimone R (2001) Modulation of oscillatory neuronal synchronization by selective visual attention. Science 291:1560–1563

    Article  PubMed  CAS  Google Scholar 

  • Gu Y, Halnes G, Liljenström H, Wahlund B (2004) A cortical network model for clinical EEG data analysis. Neurocomputing 58–60:1187–1196

    Article  Google Scholar 

  • Gu Y, Halnes G, Liljenström H, von Rosen D, Wahlund B, Liang H (2006) Modelling ECT effects by connectivity changes in cortical neural networks. Neurocomputing 69:1341–1347

    Article  Google Scholar 

  • Hamker FH (2004a) A dynamic model of how feature cues guide spatial attention. Visual Res 44:501–521

    Google Scholar 

  • Hamker FH (2004b) The reentry hypothesis: the putative interaction of the frontal eye field, ventrolateral prefrontal cortex, and areas v4, it for attention and eye movement, cerebral cortex advance Access published August 18, 2004

  • Hupé J-M, James AC, Girard P, Lomber SG, Payne BR, Bullier J (2001) Feedback connections act on the early part of the responses in monkey visual cortex. J Neurophysiol 85:134–145

    PubMed  Google Scholar 

  • Kisvarday ZF, Cowey A, Smith AD, Somogyi P (1989) Interlaminar and lateral excitatory amino acid connections in the striate cortex of monkey. J Neurosci 9(2):667–682

    PubMed  CAS  Google Scholar 

  • Korchounov A, Ilic TV, Schwinge T, Ziemann U (2005) Modification of motor cortical excitability by an acetylcholinesterase inhibitor. Exp Brain Res 164:399–405

    Article  PubMed  CAS  Google Scholar 

  • Kopell N, Ermentrout GB, Whittington MA, Traub RD (2000) Gamma rhythms and beta rhythms have different synchronization properties. Proc Natl Acad Sci USA 97(4):1867–1872

    Article  PubMed  CAS  Google Scholar 

  • Kranczioch C, Debener S, Schwarzbach J,1 Goebel R, Engel AK (2005) Neural correlates of conscious perception in the attentional blink. NeuroImage 24:704–714

    Article  PubMed  Google Scholar 

  • Kuczewski N, Aztiria E, Gautam D, Wess J, Domenici L (2005) Acetylcholine modulates cortical synaptic transmission via different muscarinic receptors, as studied with receptor knockout mice. J Physiol 566(3):907–919

    Article  PubMed  CAS  Google Scholar 

  • Liljenström H (1991) Modeling the dynamics of olfactory cortex using simplified network units and realistic architecture. Int J Neural Systems 2:1–15

    Article  Google Scholar 

  • Liljenström H, Hasselmo M (1995) Cholinergic modulation of cortical oscillatory dynamics. J Neurophysiol 74:288–297

    PubMed  Google Scholar 

  • McAdams C, Maunsell J (1999) Effects of attention on orientation-tuning functions of single neurons in macaque cortical are V4. J Neurosci 19:431–441

    PubMed  CAS  Google Scholar 

  • Siegel M, Körding KP, König P (2000) Integrating top-down and bottom-up sensory processing by somato-dendritic interactions. J Comp Neurosci 8:161–173

    Article  CAS  Google Scholar 

  • von Stein A, Chiang C, König P (2000) Top-down processing mediated by interareal synchronization. Proc Natl Acad Sci USA 97(26):14748–14753

    Article  Google Scholar 

  • Wright JJ, Liley DTJ (1995) Simulation o f electrocortical waves. Biol Cybern 72:347–356

    PubMed  CAS  Google Scholar 

  • Wu X, Liljenström H (1994) Regulating the nonlinear dynamics of olfactory cortex. Network: Comput Neural Syst 5:47–60

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans Liljenström.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gu, Y., Liljenström, H. A neural network model of attention-modulated neurodynamics. Cogn Neurodyn 1, 275–285 (2007). https://doi.org/10.1007/s11571-007-9028-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11571-007-9028-7

Keywords

Navigation