Skip to main content

Advertisement

Log in

Energy coding in biological neural networks

  • Research Article
  • Published:
Cognitive Neurodynamics Aims and scope Submit manuscript

Abstract

According to the experimental result of signal transmission and neuronal energetic demands being tightly coupled to information coding in the cerebral cortex, we present a brand new scientific theory that offers an unique mechanism for brain information processing. We demonstrate that the neural coding produced by the activity of the brain is well described by our theory of energy coding. Due to the energy coding model’s ability to reveal mechanisms of brain information processing based upon known biophysical properties, we can not only reproduce various experimental results of neuro-electrophysiology, but also quantitatively explain the recent experimental results from neuroscientists at Yale University by means of the principle of energy coding. Due to the theory of energy coding to bridge the gap between functional connections within a biological neural network and energetic consumption, we estimate that the theory has very important consequences for quantitative research of cognitive function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arbib MA (2002) The handbook of brain theory and neural networks.␣The MIT Press, Cambridge, Massachusetts, London, England

    Google Scholar 

  • Crotty P, Levy WB (2005) Energy-efficient interspike interval codes. Neurocomputing 65–66:371–378

    Google Scholar 

  • Freeman WJ (2000) Neurodynamics. Springer-Verlag, Berlin

    Google Scholar 

  • Haken H (1996) Principles of brain functioning. Springer, Belin

    Google Scholar 

  • Hyder F, Rothman DL, Shulman RG (2002). Total neuroenergetics support localized brain activity: implications for the interpretation of fMRI. Proc Natl Acad Sci, USA 99:10771

    Article  PubMed  CAS  Google Scholar 

  • Jiao X, Wang R (2005) Nonlinear dynamic model and neural coding of neuronal network with the variable coupling strength in the presence of external stimuli. Appl Phys Lett 87:083901

    Article  CAS  Google Scholar 

  • Jiao X, Wang R (2006) Synchronization in neuronal population with the variable coupling strength in the presence of external stimulus. Appl Phys Lett 88:203901

    Article  CAS  Google Scholar 

  • Mayhew JEW (2003) A measured look at neuronal oxygen consumption. Science 299:1023

    Google Scholar 

  • John G, Robert A, Bruce G, Wallace NM (2000) From neuron to brain. Sinauer, USA

    Google Scholar 

  • Koch C, Segev I (1998) Methods in neuronal modeling. The MIT Press, Cambridge, Massachusetts, London, England

    Google Scholar 

  • Laughlin SB, Sejnowski TJ (2003) Communication in neuronal networks. Science 301:1870

    Article  PubMed  CAS  Google Scholar 

  • Levy WB, Baxter RA (1996) Energy efficient neural codes. Neural Comp 8:531

    CAS  Google Scholar 

  • Levy WB, Baxter RA (2002) Energy-efficient neuronal computation via quantal synaptic failures. J Neurosci 22(11):4746

    PubMed  CAS  Google Scholar 

  • Mata M, Fink DJ, Gainer H, Smith CB, Davidsen L, Savaki H, Schwartz WJ, Sokoloff L (1980) Activity dependent energy metabolism in rat posteria pituitary primarily reflects sodium pump activity. Neurochem J 34(1):213

    Article  CAS  Google Scholar 

  • Purushothman G, Bradley DC (2005) Neural population code for fine perceptual decisions in area MT. Nature Neuroscience 8:99

    Article  CAS  Google Scholar 

  • Quiroga RQ, Reddy L, Kreiman G, Koch C, Fried I (2005) Invariant visual representation by single neurons in the human brain. Nature 435:1102

    Article  PubMed  CAS  Google Scholar 

  • Raichle ME, Gusnard DA (2002) Appraising the brain's energy budget. Proc Natl Acad Sci PNAS 99(16):10237–10239

    Article  PubMed  CAS  Google Scholar 

  • Schwartz WJ, Smith CB, Davidsen L, Savaki H, Sokoloff L, Mata M, Fink DJ, Gainer H (1979) Metabolic mapping of functional activity in the hypothalamo-neurohypophyseal system of the rat. Science 205:723

    Article  PubMed  CAS  Google Scholar 

  • Smith AJ, Blumenfeld H, Behar KL, Rothman DL, Shulman RG (2002) Cerebral energetics and spiking frequency: the neurophysiological basis of fMRI. Proc Natl Acad Sci PNAS 99(16):10765–10770

    Article  PubMed  CAS  Google Scholar 

  • Stein RB, Gossen ER, Jones KE (2005) Neuronal variability: noise or part of the signal? Nature Rev Neurosci 6:389

    Article  CAS  Google Scholar 

  • Taylor JG (2003) Paying attention to consciousness. Progr Neurobiol 71:305

    Article  Google Scholar 

  • Wang R (2003) In: Application of the stochastic structural dynamics in neuronal activity. Proceedings of the fifth international conference of stochastic structural dynamics. CRC Press, USA, pp 453

  • Wang R, Jiao X (2006) A stochastic nonlinear evolution model and neural coding on neuronal population possessing variable coupling intensity in spontaneous behavior. Neurocomputing 69:778

    Article  CAS  Google Scholar 

  • Wang R, Zhang Z (2003) Nonlinear stochastic models of neurons activities. Neurocomputing 51C:401

    Article  Google Scholar 

  • Wang R, Zhang Z (2005) On energy principle of couple neuron activities. Acta Biophysica Sinica 21(6):436–442

    Google Scholar 

  • Wang R, Zhang Z (2006) Acta Biophysica Sinica. In: Proceedings of the second conference on brain and cognitive science. 22(2):132

  • Wang R, Hayashi H, Zhang Z (2003) An exploration of dynamics on moving mechanism of the growth cone. Molecules 8:127

    Article  CAS  Google Scholar 

  • Wang R, Yu J, Zhang Z (2006) A Neural model of cognitive process. Adv Neural Network Part 1:50–59

    Article  Google Scholar 

  • Wilson RA, Keil FC (1999) The MIT encyclopedia of the cognitive sciences. The MIT Press, Cambridge, Massachusetts, London, England

    Google Scholar 

  • Zhu WQ (2003) Nonlinear stochastic dynamics and control. Science Press, Beijing

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No.30270339)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rubin Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, R., Zhang, Z. Energy coding in biological neural networks. Cogn Neurodyn 1, 203–212 (2007). https://doi.org/10.1007/s11571-007-9015-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11571-007-9015-z

Keywords

Navigation