NanoEthics

, Volume 10, Issue 2, pp 139–159 | Cite as

CRISPR/Cas9 genome editing – new and old ethical issues arising from a revolutionary technology

Original Paper

Abstract

Although germline editing has been the subject of debate ever since the 1980s, it tended to be based rather on speculative assumptions until April 2015, when CRISPR/Cas9 technology was used to modify human embryos for the first time. This article combines knowledge about the technical and scientific state of the art, economic considerations, the legal framework and aspects of clinical reality. A scenario will be elaborated as a means of identifying key ethical implications of CRISPR/Cas9 genome editing in humans and possible ways of dealing with them. Unlike most other discussions of CRISPR/Cas9 germline editing, which are generally based on deontological arguments, the focus in this case will be on a consequentialistic argument against certain applications of germline and somatic editing that takes not only the potential benefits and risks but also socioeconomic issues into consideration. The practical need for an indication catalogue, guidelines for clinical trials, and for funding of basic research will be pointed out. It will be argued that this need for regulatory action and discussion does not stem primarily from the fact that CRISPR/Cas9 germline editing is revolutionary in terms of its ethical implications and potential for human therapy, although this is the prevailing view in the current discussion. Understanding the value and interest dependency of arguments put forward by different stakeholders and learning from past debates related to similar technologies might prove a fruitful method of reaching judgments and decisions that come closer to a consensus upon which society as a whole can agree - which after all should be the true goal of an ethical debate and of bioethics.

Keywords

Crispr Genome editing Germline modification Bioethics ELSA 

References

  1. 1.
    Liang P, Xu Y, Zhang X, Ding C, Huang R, Zhang Z, Lv J, Xie X, Chen Y, Li Y, Sun Y, Bai Y, Songyang Z, Ma W, Zhou C, Huang J (2015) CRISPR/Cas9-mediated gene editing in human tripronuclear zygotes. Protein Cell 6(5):363–372. doi:10.1007/s13238-015-0153-5 CrossRefGoogle Scholar
  2. 2.
    Doudna JA, Charpentier E (2014) The new frontier of genome engineering with CRISPR-Cas9. Science 346(6213):1077. doi:10.1126/science.1258096 CrossRefGoogle Scholar
  3. 3.
    Cox DBT, Platt RJ, Zhang F (2015) Therapeutic genome editing: prospects and challenges. Nat Med 21(2):121–131. doi:10.1038/nm.3793 CrossRefGoogle Scholar
  4. 4.
    Gersbach CA (2014) Genome engineering: the next genomic revolution. Nat Methods 11(10):1009–1011. doi:10.1016/j.tibtech.2013.04.004 CrossRefGoogle Scholar
  5. 5.
    Mussolino C, Mlambo T, Cathomen T (2015) Proven and novel strategies for efficient editing of the human genome. Curr Opin Pharmacol 24:105–112. doi:10.1016/j.coph.2015.08.008 CrossRefGoogle Scholar
  6. 6.
    Singh P, Schimenti JC, Bolcun-Filas E (2015) A mouse geneticist’s practical guide to CRISPR applications. Genetics 199(1):1–15. doi:10.1534/genetics.114.169771 CrossRefGoogle Scholar
  7. 7.
    Ran Le Cong FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini LA, Zhang F (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339(6121):819–823. doi:10.1126/science.1231143 CrossRefGoogle Scholar
  8. 8.
    Bosley KS, Botchan M, Bredenoord AL, Carroll D, Charo RA, Charpentier E, Cohen R, Corn J, Doudna J, Feng G, Greely HT, Isasi R, Ji W, Kim JS, Knoppers B, Lanphier E, Li J, Lovell-Badge R, Martin GS, Moreno J, Naldini L, Pera M, Perry ACF, Venter JC, Zhang F, Zhou Q (2015) CRISPR germline engineering—the community speaks. Nat Biotechnol 33(5):478–486. doi:10.1038/nbt.3227 CrossRefGoogle Scholar
  9. 9.
    Lanphier E, Urnov F, Haecker SE, Werner M, Smolenski J (2015) Don’t edit the human germ line. Nature 519(7544):410–411. doi:10.1038/519410a CrossRefGoogle Scholar
  10. 10.
    Vogel G (2015) Embryo engineering alarm. Science 347(6228):1301. doi:10.1126/science.347.6228.1301 CrossRefGoogle Scholar
  11. 11.
    Norman C (1983) Clerics urge ban on altering germline cells. Science 220(4604):1360–1361CrossRefGoogle Scholar
  12. 12.
    Torgersen H, Schmidt M (2013) Frames and comparators: how might a debate on synthetic biology evolve? Futures 48(100):44–54. doi:10.1016/j.futures.2013.02.002 CrossRefGoogle Scholar
  13. 13.
    AJ Newson, A Wrigley (2015) Identifying key developments, issues and questions relating to techniques of genome editing with engineered nucleases. Background paper. http://nuffieldbioethics.org/wp-content/uploads/Genome-Editing-Briefing-Paper-Newson-Wrigley.pdf. Accessed 1 Dec 2015
  14. 14.
    Sarewitz D (2015) CRISPR: science can’t solve it. Nature 522(7557):413–414. doi:10.1038/522413a CrossRefGoogle Scholar
  15. 15.
    Ledford H (2015) CRISPR the disruptor. Nature 522(7554):20–24. doi:10.1038/522020a CrossRefGoogle Scholar
  16. 16.
    Kaiser J, Normile D (2015) Embryo engineering study splits scientific community. Science 348(6234):486–487. doi:10.1126/science.348.6234.486 CrossRefGoogle Scholar
  17. 17.
    Pollack R (2015) Eugenics lurk in the shadow of CRISPR. Science 348(6237):871. doi:10.1126/science.348.6237.871-a CrossRefGoogle Scholar
  18. 18.
    Miller HI (2015) Germline gene therapy: we’re ready. Science 348(6241):1325. doi:10.1126/science.348.6241.1325-a CrossRefGoogle Scholar
  19. 19.
    Krishan K, Kanchan T, Singh B (2016) Human genome editing and ethical considerations. Sci Eng Ethics 22(2):597–599. doi:10.1007/s11948-015-9675-8 CrossRefGoogle Scholar
  20. 20.
    Goldim JR (2015) Genetics and ethics: a possible and necessary dialogue. J Community Genet 6(3):193–196. doi:10.1007/s12687-015-0232-6 CrossRefGoogle Scholar
  21. 21.
    Sugarman J (2015) Ethics and germline gene editing. EMBO Rep 16(8):879–880. doi:10.15252/embr.201540879 CrossRefGoogle Scholar
  22. 22.
    Carroll D, Charo RA (2015) The societal opportunities and challenges of genome editing. Genome Biol 16(1):242. doi:10.1186/s13059-015-0812-0 CrossRefGoogle Scholar
  23. 23.
    Araki M, Ishii T (2014) International regulatory landscape and integration of corrective genome editing into in vitro fertilization. Reprod Biol Endocrinol 12:108. doi:10.1186/1477-7827-12-108 CrossRefGoogle Scholar
  24. 24.
    Ishii T (2015) Germline genome-editing research and its socioethical implications. Trends Mol Med 21(8):473–481. doi:10.1016/j.molmed.2015.05.006 CrossRefGoogle Scholar
  25. 25.
    Merlot J (2015) Umstrittene Experimente: Forscher manipulieren Erbgut menschlicher Embryonen. SPIEGEL, 24 April 2015. http://www.spiegel.de/wissenschaft/medizin/forscher-manipulieren-gene-menschlicher-embryonen-a-1030142.html. Accessed 1 Dec 2015
  26. 26.
    Focus (2015) Forscher aus China verändern Erbgut von Embryos. Focus, 24 April 2015. http://www.focus.de/wissen/mensch/tabubruch-der-gentechnik-chinesische-forscher-veraendern-erbgut-von-embryos_id_4635723.html. Accessed 1 Dec 2015
  27. 27.
    Schlütter J (2015) Tagesspiegel, 24 April 2015. Die Weltgemeinschaft sollte über ethische Grenzen diskutieren! http://www.tagesspiegel.de/wissen/gentechnisch-optimierte-embryonen-dieweltgemeinschaft-sollte-ueber-ethische-grenzen-diskutieren/11681026.html. Accessed 1 Dec 2015
  28. 28.
    Zinkant K (2015) Eine Grenze ist überschritten. Süddeutsche Zeitung, 25 April 2015. http://www.sueddeutsche.de/wissen/genetische-manipulation-eine-grenze-ist-ueberschritten-1.2452395. Accessed 1 Dec 2015
  29. 29.
    Bahnsen U (2015) Der Mensch kann seine Evolution nun selbst bestimmen. ZEIT, 23 April 2015. http://www.zeit.de/wissen/gesundheit/2015-04/genetik-erbgut-embryo-china. Accessed 1 Dec 2015
  30. 30.
    Zimmer C (2015) Editing human embryos: so this happened. http://phenomena.nationalgeographic.com/2015/04/22/editing-human-embryos-so-this-happened. Accessed 1 Dec 2015
  31. 31.
  32. 32.
    Baltimore D, Berg P, Botchan M, Carroll D, Charo RA, Church G, Corn JE, Daley GQ, Doudna JA, Fenner M, Greely HT, Jinek M, Martin GS, Penhoet E, Puck J, Sternberg SH, Weissman JS, Yamamoto KR (2015) A prudent path forward for genomic engineering and germline gene modification. Science 348(6230):36–38. doi:10.1126/science.aab1028 CrossRefGoogle Scholar
  33. 33.
    Berg P (2008) Meetings that changed the world: Asilomar 1975: DNA modification secured. Nature 455(7211):290–291. doi:10.1038/455290a CrossRefGoogle Scholar
  34. 34.
    Kaebnick GE (2015) A Moratorium on Gene Editing? http://www.thehastingscenter.org/Bioethicsforum/Post.aspx?id=7359&blogid=140. Accessed 1 Dec 2015
  35. 35.
    Heavey P (2013) Synthetic biology ethics: a deontological assessment. Bioethics 27(8):442–452. doi:10.1111/bioe.12052 CrossRefGoogle Scholar
  36. 36.
    Ter Meulen R, Biller-Andorno N, Newson A, Hunter D (2013) How to object to radically new technologies on the basis of justice: the case of synthetic biology. Bioethics 27(8):426–434. doi:10.1111/bioe.12049 CrossRefGoogle Scholar
  37. 37.
    Smith K (2013) Synthetic biology: a utilitarian perspective. Bioethics 27(8):453–463. doi:10.1111/bioe.12050 CrossRefGoogle Scholar
  38. 38.
    Smith KR, Chan S, Harris J (2012) Human germline genetic modification: scientific and bioethical perspectives. Arch Med Res 43(7):491–513. doi:10.1111/bioe.12050 CrossRefGoogle Scholar
  39. 39.
    Pugh J (2015) Autonomy, natality and freedom: a liberal re-examination of habermas in the enhancement debate. Bioethics 29(3):145–152. doi:10.1111/bioe.12082 CrossRefGoogle Scholar
  40. 40.
    Sunkara SK, Rittenberg V, Raine-Fenning N, Bhattacharya S, Zamora J, Coomarasamy A (2011) Association between the number of eggs and live birth in IVF treatment: an analysis of 400 135 treatment cycles. Hum Reprod 26(7):1768–1774. doi:10.1093/humrep/der106 CrossRefGoogle Scholar
  41. 41.
    Das SK, Menezes ME, Bhatia S, Wang X-Y, Emdad L, Sarkar D, Fisher PB (2015) Gene therapies for cancer: strategies, challenges and successes. J Cell Physiol 230(2):259–271. doi:10.1002/jcp.24791 CrossRefGoogle Scholar
  42. 42.
    Ledford H (2015) Mini enzyme moves gene editing closer to the clinic. Nature 520(7545):18. doi:10.1038/520018a CrossRefGoogle Scholar
  43. 43.
    Kendler KS (2013) What psychiatric genetics has taught us about the nature of psychiatric illness and what is left to learn. Mol Psychiatry 18(10):1058–1066. doi:10.1038/mp.2013.50 CrossRefGoogle Scholar
  44. 44.
    Lander ES (2015) Brave new genome. N Engl J Med 373(1):5–8. doi:10.1056/NEJMp1506446 CrossRefGoogle Scholar
  45. 45.
    Powledge TB (2014) Whole-genome sequencing in your doctor’s office? A reality check, but sooner than later. http://www.geneticliteracyproject.org/2014/03/25/whole-genome-sequencing-in-your-doctors-office-a-reality-check-but-sooner-than-later/. Accessed 1 Dec 2015
  46. 46.
    Winand R, Hens K, Dondorp W, de Wert G, Moreau Y, Vermeesch JR, Liebaers I, Aerts J (2014) In vitro screening of embryos by whole-genome sequencing: now, in the future or never? Hum Reprod 29(4):842–851. doi:10.1093/humrep/deu005 CrossRefGoogle Scholar
  47. 47.
    Hens K, Dondorp W, de Wert G (2015) A leap of faith? An interview study with professionals on the use of mitochondrial replacement to avoid transfer of mitochondrial diseases. Hum Reprod 30(5):1256–1262. doi:10.1093/humrep/dev056 CrossRefGoogle Scholar
  48. 48.
    Hammitt JK (2002) QALYs versus WTP. Risk Anal 22(5):985–1001CrossRefGoogle Scholar
  49. 49.
    EMA, Guideline on the quality, non-clinical and clinical aspects of gene therapy medicinal products: Draft. http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2015/05/WC500187020.pdf. Accessed 1 Dec 2015
  50. 50.
    U.S. Department of Health and Human Services- FDA- Center for Biologics Evaluation (2006) Gene therapy clinical trials - observing subjects for delayed adverse events: guidance for industry. Accessed 1 Dec 2015Google Scholar
  51. 51.
    Europäisches Parlament und Europäischer Rat (2009) RICHTLINIE 2009/120/EG, 2009Google Scholar
  52. 52.
    Knight FH (1921) Risk, uncertainty and profit. Hart, Schaffner & Marx, Houghton Mifflin, Boston, MAGoogle Scholar
  53. 53.
    DACEHTA-Danish Centre for Health Technology Assessment (2015) Health technology assessment handbook. http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2015/05/WC500187020.pdf. Accessed 1 Dec 2015
  54. 54.
    Nature Medicine (2015) Germline editing: time for discussion. Nat Med 21(4):295. doi:10.1038/nm.3845
  55. 55.
    Morrison C (2015) $1-million price tag set for glybera gene therapy. Nat Biotechnol 33(3):217–218. doi:10.1038/nbt0315-217 CrossRefGoogle Scholar
  56. 56.
    ECDC & EMEA (2009) The bacterial challenge - time to react: a call to narrow the gap between multidrug-resistant bacteria in the EU and development of new antibacterial agents, 2009. Accessed 1 Dec 2015Google Scholar
  57. 57.
    Kuhrt N (2013) Was darf ein Monat Leben kosten? Frankfurter Allgemeine Zeitung, 20 January 2010. http://www.faz.net/aktuell/wissen/medizin/krebstherapie-was-darf-ein-monat-leben-kosten-1907448.html. Accessed 1 Dec 2015
  58. 58.
    Wirth T, Parker N, Ylä-Herttuala S (2013) History of gene therapy. Gene 525(2):162–169. doi:10.1016/j.gene.2013.03.137 CrossRefGoogle Scholar
  59. 59.
    Clinicaltrials.gov. Accessed 1 Dec 2015Google Scholar
  60. 60.
    Knoppers BM, Chadwick R (2005) Human genetic research: emerging trends in ethics, nature reviews. Genetics 6(1):75–79. doi:10.1038/nrg1505 Google Scholar
  61. 61.
    Cressey D, Abbott A, Ledford H (2015) UK scientists apply for licence to edit genes in human embryos. http://www.scientificamerican.com/article/scientists-apply-for-license-to-edit-genes-in-human-embryos. Accessed 8 Dec 2015
  62. 62.
    Tu Z, Yang W, Yan S, Guo X, Li X-J (2015) CRISPR/Cas9: a powerful genetic engineering tool for establishing large animal models of neurodegenerative diseases. Mol Neurodegener 10:35. doi:10.1186/s13024-015-0031-x CrossRefGoogle Scholar
  63. 63.
    Combes RD, Balls M (2014) Every silver lining has a cloud: the scientific and animal welfare issues surrounding a new approach to the production of transgenic animals. ATLA Altern Lab Anim 42(2):137–145Google Scholar
  64. 64.
    Reardon S (2015) NIH reiterates ban on editing human embryo DNA. http://www.nature.com/news/nih-reiterates-ban-on-editing-human-embryo-dna-1.17452. Accessed 8 Dec 2015
  65. 65.
    Fateh-Moghadam B (2011) Rechtliche Aspekte der somatischen Gentherapie. In: Fehse B, Domasch S (eds) Gentherapie in Deutschland. Dornburg: Wissenschaftlicher Verlag, pp 151–184Google Scholar
  66. 66.
    Reich J (ed) (2015) Genomchirurgie beim Menschen - zur verantwortlichen Bewertung einer neuen Technologie: eine Analyse der interdisziplinären Arbeitsgruppe Gentechnologiebericht. BBAW, BerlinGoogle Scholar
  67. 67.
    Johnson MH, Franklin SB, Cottingham M, Hopwood N (2010) Why the medical research council refused Robert Edwards and Patrick Steptoe support for research on human conception in 1971. Hum Reprod 25(9):2157–2174CrossRefGoogle Scholar
  68. 68.
    Bundesministerium für Gesundheit. PID. http://www.bmg.bund.de/glossarbegriffe/p-q/praeimplantationsdiagnostik.html. Accessed 1 Dec 2015
  69. 69.
    van Montfoort APA, Hanssen LLP, de Sutter P, Viville S, Geraedts JPM, de Boer P (2012) Assisted reproduction treatment and epigenetic inheritance. Hum Reprod Update 18(2):171–197CrossRefGoogle Scholar
  70. 70.
    Wang J, Sauer MV (2006) In vitro fertilization (IVF): a review of 3 decades of clinical innovation and technological advancement. Ther Clin Risk Manag 2(4):355–364CrossRefGoogle Scholar
  71. 71.
    Karen Geraghty, Protecting the Public: Profile of Dr. Frances Oldham Kelsey. http://journalofethics.ama-assn.org/2001/07/prol1-0107.html. Accessed 1 Dec 2015
  72. 72.
    Review of scientific methods to avoid mitochondrial disease (2014) http://www.hfea.gov.uk/8807.html. Accessed 1 Dec 2015
  73. 73.
    Europäisches Parlament und Rat zur Schaffung eines Gemeinschaftskodexes für Humanarzneimittel im Hinblick auf Arzneimittel für neuartige Therapien, zur Änderung der Richtlinie 2001/83/EG des Europäischen Parlaments und des Rates zur Schaffung eines Gemeinschaftskodexes für Humanarzneimittel im Hinblick auf Arzneimittel für neuartige Therapien: RICHTLINIE 2009/120/EG, 2009.Google Scholar
  74. 74.
    Asher Mullard (2015) Use of personalized cancer drugs runs ahead of the science. http://www.nature.com/news/use-of-personalized-cancer-drugs-runs-ahead-of-the-science-1.18389. Accessed 1 Dec 2015
  75. 75.
    Nuffield Council (2012) Novel techniques for the prevention of mitochondrial DNA disorders: an ethical view. Nuffield Council on Bioethics, LondonGoogle Scholar
  76. 76.
    Mitalipov S, Wolf DP (2014) Clinical and ethical implications of mitochondrial gene transfer. Trends Endocrinol Metab 25(1):5–7. doi:10.1016/j.tem.2013.09.001 CrossRefGoogle Scholar
  77. 77.
    Tachibana M, Sparman M, Sritanaudomchai H, Ma H, Clepper L, Woodward J, Li Y, Ramsey C, Kolotushkina O, Mitalipov S (2009) Mitochondrial gene replacement in primate offspring and embryonic stem cells. Nature 461(7262):367–372. doi:10.1038/nature08368 CrossRefGoogle Scholar
  78. 78.
    Jesse Reynolds (2009) Monkeys, mitochondria, and the human germline. http://www.thehastingscenter.org/Bioethicsforum/Post.aspx?id=3904&blogid=140. Accessed 1 Dec 2015
  79. 79.
    Kouros N (2013) Eugenics concerns over mitochondrial replacement. Monash Bioeth Rev 31(2):5–6Google Scholar
  80. 80.
    Ball P (2014) The art of medicine: unnatural reactions. Lancet 383:1964–1965CrossRefGoogle Scholar
  81. 81.
    Smajdor A, Ives J, Baldock E, Langlois A (2008) Getting from the ethical to the empirical and back again: the danger of getting it wrong, and the possibilities for getting it right. Health Care Anal 16(1):7–16. doi:10.1007/s10728-007-0079-z CrossRefGoogle Scholar
  82. 82.
    Nordmann A, Rip A (2009) Mind the gap revisited. Nat Nanotechnol 4(5):273–274. doi:10.1038/nnano.2009.26 CrossRefGoogle Scholar
  83. 83.
    Deutscher Ethikrat (2014) Sollten Vorkern- und Spindeltransfer bei mitochondrialen Erkrankungen in Deutschland zulässig sein? http://www.ethikrat.org/dateien/pdf/jt-22-05-2014-vorkern-und-spindeltransfer.pdf. Accessed 1 Dec 2015
  84. 84.
    Engelhardt HT (2011) Confronting moral pluralism in posttraditional Western societies: bioethics critically reassessed. J Med Philos 36(3):243–260CrossRefGoogle Scholar
  85. 85.
    Patenaude J, Legault GA, Béland J-P, Parent M, Boissy P (2011) Moral arguments in the debate over nanotechnologies: are we talking past each other? NanoEthics 5(3):285–293. doi:10.1007/s11569-011-0132-0 CrossRefGoogle Scholar
  86. 86.
    Macer D (1995) International perceptions and approval of gene therapy. Hum Gene Ther 6:791–803CrossRefGoogle Scholar
  87. 87.
    Robillard JM (2015) Communicating in context: a priority for gene therapy researchers. Expert Opin Biol Ther 15(3):315–318. doi:10.1517/14712598.2015.1001735 CrossRefGoogle Scholar
  88. 88.
    Robillard JM, Roskams-Edris D, Kuzeljevic B, Illes J (2014) Prevailing public perceptions of the ethics of gene therapy. Hum Gene Ther 25(8):740–746. doi:10.1089/hum.2014.030 CrossRefGoogle Scholar
  89. 89.
    Madhusoodanan J (2015) Bioethics accused of doing more harm than good. Nature 524(7564):139CrossRefGoogle Scholar
  90. 90.
  91. 91.
    Niu Y, Shen B, Cui Y, Chen Y, Wang J, Wang L, Kang Y, Zhao X, Si W, Li W, Xiang AP, Zhou J, Guo X, Bi Y, Si C, Hu B, Dong G, Wang H, Zhou Z, Li T, Tan T, Pu X, Wang F, Ji S, Zhou Q, Huang X, Ji W, Sha J (2014) Generation of gene-modified cynomolgus monkey via Cas9/RNA-mediated gene targeting in one-cell embryos. Cell 156(4):836–843. doi:10.1016/j.cell.2014.01.027 CrossRefGoogle Scholar
  92. 92.
    Wu Y, Liang D, Wang Y, Bai M, Tang W, Bao S, Yan Z, Li D, Li J (2013) Correction of a genetic disease in mouse via use of CRISPR-Cas9. Cell Stem Cell 13(6):659–662. doi:10.1016/j.stem.2013.10.016 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Munich Center for Technology in SocietyTU MunichMunichGermany

Personalised recommendations