Skip to main content
Log in

Characteristics, Properties and Ethical Issues of Carbon Nanotubes in Biomedical Applications

  • Original Paper
  • Published:
NanoEthics Aims and scope Submit manuscript

Abstract

The field of nanotechnology and nanoscience is growing rapidly in many areas of research, from electronics to biomedicine to material science. Carbon nanotubes are receiving a lot of attention in the research due to their unique properties and many possible applications. This new material is a good example of how nanotechnology provides us with new opportunities, but at the same time leaves us a lot of unknowns to deal with. In order to deal with the unknowns we need to consider both the science and the ethics of the different applications of this novel material. Nanoethics is the study of the ethical issues in nanotechnology. It is a relatively new field of study and a lot of different methods have been suggested in this area. In this article a method is suggested combining an existing ethical theory with a practical approach in order to do a case study of the ethical considerations of using carbon nanotubes in biomedicine. For the case study to be of practical significance the scientific characteristics and properties of carbon nanotubes are reviewed to give the reader an overview of the research field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rasmussen AJ, Ebbesen M, Andersen A (2012) Nanoethics—a collaboration across disciplines. Nanoethics 6(3):185–193

    Article  Google Scholar 

  2. van de Poel I (2008) How should we do nanoethics? A network approach for discerning ethical issues in nanotechnology. Nanoethics 2:25–38

    Article  Google Scholar 

  3. Dupuy J-P (2007) Some pitfalls in the philosophical foundations of nanoethics. J Med Philos 32:237–261

    Article  Google Scholar 

  4. Allhoff F (2007) On the autonomy and justification of nanoethics. Nanoethics 1(3):185–210

    Article  Google Scholar 

  5. Koepsell D (2010) On genies and bottles: scientists’ moral responsibility and dangerous technology R&D. Sci Eng Ethics 16:119–133

    Article  Google Scholar 

  6. Ebbesen M, Andersen S, Besenbacher F (2006) Ethics in nanotechnology: starting from scratch? Bulletin of science. Technol Soc 26(6):451–462

    Google Scholar 

  7. Gordijn B (2005) Nanoethics: from Utopian dreams and apocalyptic nightmares towards a more balanced view. Sci Eng Ethics 11:521–533

    Article  Google Scholar 

  8. Kuzma J, Besley JC (2008) Ethics of risk analysis and regulatory review: from bio- to nanotechnology. Nanoethics 2:149–162

    Article  Google Scholar 

  9. Beauchamp TL, Childress JF (2009) Principles of biomedical ethics, 6th edn. Oxford University Press, New York

    Google Scholar 

  10. Ebbesen M, Jensen TG (2006) Nanomedicine: techniques, potentials and ethical implications. J Biomed Biotechnol 2006:1–11

    Article  Google Scholar 

  11. Meetoo D (2009) Nanotechnology: is there a need for ethical principles? Br J Nurs 18(20):1264–1268

    Google Scholar 

  12. Strong C (2000) Specified principlism: what is it, and does it really resolve cases better than casuistry? J Med Philos 25(3):323–341

    Article  Google Scholar 

  13. Hedgecoe AM (2004) Critical bioethics: beyond the social science critique of applied ethics. Bioethics 18(2):120–143

    Article  Google Scholar 

  14. Ebbesen M (2009) The principle of justice and access to nanomedicine in national healthcare systems. Stud Ethics Law Technol 3(3), Article 5

    Google Scholar 

  15. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58

    Article  Google Scholar 

  16. Oberlin A, Endo M, Koyama T (1976) Filamentous growth of carbon through benzene decomposition. J Cryst Growth 32:335–349

    Article  Google Scholar 

  17. Terrones M (2003) Science and technology of the twenty-first century: synthesis, properties and applications of carbon nanotubes. Ann Rev Mater Res 33:419–501

    Article  Google Scholar 

  18. Schnorr JM, Swager TM (2011) Emerging applications of carbon nanotubes. Chem Mater 23:646–657

    Article  Google Scholar 

  19. Donaldson K, Aitken R, Tran L, Stone V, Duffin R, Forrest G, Alexander A (2006) Carbon nanotubes: a review of their properties in relation to pulmonary toxicology and workplace safety. Toxicol Sci 92(1):5–22

    Article  Google Scholar 

  20. Lacerda L, Bianco A, Prato M, Kostarelos K (2006) Carbon nanotubes as nanomedicines: from toxicology to pharmacology. Adv Drug Deliv Rev 58:1460–1470

    Article  Google Scholar 

  21. Hu J, Odom TW, Lieber CM (1999) Chemistry and physics in one dimension: synthesis and properties of nanowires and nanotubes. Acc Chem Res 32:435–445

    Article  Google Scholar 

  22. Malik SR, Maqbool MA, Hussain S, Irfan H (2008) Carbon nanotubes: description, properties and applications. J Pak Mater Soc 2(1):21–26

    Google Scholar 

  23. Sinnott SB, Andrews R (2001) Carbon nanotubes: synthesis, properties, and applications. Crit Rev Solid State Mater Sci 26(3):145–249

    Article  Google Scholar 

  24. Rejeski D, Kuiken T, Polischuk P, Pauwels E (2005) The project of emerging nanotechnologies. Woodrow Wilson International Center for Scholars and the Pew Charitable Trusts

  25. Bianco A, Kostarelos K, Pertidos CD, Prato M (2005) Biomedical applications of functionalized carbon nanotubes. Chem Commun 2005:571–577

    Article  Google Scholar 

  26. Tasis D, Tagmatarchis N, Bianco A, Prato M (2006) Chemistry of carbon nanotubes. Chem Rev 106:1105–1136

    Article  Google Scholar 

  27. Tasis D, Tagmatarchis N, Georgakilas V, Prato M (2003) Soluble carbon nanotubes. Chem Eur J 9:4000–4008

    Article  Google Scholar 

  28. Beg S, Rizwan M, Sheikh AM, Hasnain MS, Anwer K, Kohli K (2010) Advancement in carbon nanotubes: basics, biomedical applications and toxicity. J Pharm Pharmacol 63:141–163

    Article  Google Scholar 

  29. LaVan DA, Lynn DM, Langer R (2002) Moving smaller in drug discovery and delivery. Nat Rev Drug Discov 1(1):77–84

    Article  Google Scholar 

  30. Kostarelos K (2003) Rational design and engineering of delivery systems for therapeutics: biomedical exercises in colloid and surface science. Adv Colloid Interf Sci 106(1–3):147–168

    Article  Google Scholar 

  31. Liu Z, Sun X, Nakayama-Ratchford N, Dai H (2007) Supramolecular chemistry on water soluble carbon nanotubes for drug loading and delivery. ACSNANO 1(1):50–56

    Google Scholar 

  32. Liu Z, Chen K, Davis C, Sherlock S, Cao Q, Chen X, Dai H (2008) Drug delivery with carbon nanotubes for in vivo cancer treatment. Cancer Res 68(16):6652–6660

    Article  Google Scholar 

  33. Bhirde AA, Patel V, Gavard J, Zhang G, Sousa AA, Masedunskas A, Leapman RD, Weigert R, Gutkind JS, Rusling JF (2009) Targeted killing of cancer cells in vivo and in vitro with EGF-directed carbon nanotube-based drug delivery. ACSNANO 3(2):307–316

    Google Scholar 

  34. Harrison BS, Atala A (2007) Carbon nanotube applications for tissue engineering. Biomaterials 28:344–353

    Article  Google Scholar 

  35. Dhar S, Liu Z, Thomale J, Dai H, Lippard SJ (2008) Targeted single-wall carbon nanotube-mediated Pt(IV) prodrug delivery using folate as a homing device. J Am Chem Soc 130:11467–11476

    Article  Google Scholar 

  36. Kam NWS, Jessop TC, Wender PA, Dai H (2004) Nanotube molecular transporters: internalization of carbon nanotube-protein conjugates into mammalian cells. J Am Chem Soc 126:6850–6851

    Article  Google Scholar 

  37. Kam NWS, Lui Z, Dai H (2006) Carbon nanotubes as intracellular transporters for proteins and DNA: an investigation of the uptake mechanism and pathway. Angew Chem Int Ed 45:577–581

    Article  Google Scholar 

  38. Kam NWS, Dai H (2005) Carbon nanotubes as intracellular protein transporters: generality and biological functionality. J Am Chem Soc 127:6021–6026

    Article  Google Scholar 

  39. Liu Z, Yang K, Lee ST (2011) Single-walled carbon nanotubes in biomedical imaging. J Mater Chem 21:586–598

    Article  Google Scholar 

  40. Wang XJ, Liu Z (2012) Carbon nanotubes in biology and medicine: an overview. Chin Sci Bull 57(2–3):167–180

    Article  Google Scholar 

  41. Welsher K, Liu Z, Daranciang D, Dai H (2008) Selective probing and imaging of cells with single walled carbon nanotubes as near-infrared fluorescent molecules. Nano Lett 8(2):586–590

    Article  Google Scholar 

  42. Leeuw TK, Reith RM, Simonette RA, Harden ME, Cherukuri P, Beckingham KM, Weisman RB (2007) Single-walled carbon nanotubes in the intact organism: near-IR imaging and biocompatibility studies in drosophila. Nano Lett 7(9):2650–2654

    Article  Google Scholar 

  43. Liu Z, Davis C, Cai W, He L, Chen X, Dai H (2008) Circulation and long-term fate of functionalized, biocompatible single-walled carbon nanotubes in mice probed by Raman spectroscopy. Proc Natl Acad Sci U S A 105(5):1410–1415

    Article  Google Scholar 

  44. Liu Z, Cai W, He L, Nakayama N, Chen K, Sun X, Chen X, Dai H (2007) In vivo biodistribution and highly efficient tumour targeting of carbon nanotubes in mice. Nat Nanotechnol 2(1):47–52

    Article  Google Scholar 

  45. McDevitt MR, Chattopadhyay D, Kappel BJ, Jaggi JS, Schiffman SR, Antczak C, Njardarson JT, Brentiens R, Scheinberg DA (2007) Tumor targeting with antibody-functionalized, radiolabeled carbon nanotubes. J Nucl Med 48(7):1180–1189

    Article  Google Scholar 

  46. Sitharaman B, Wilson LJ (2007) Gadofullerenes and gadonanotubes: a new paradigm for high-performance magnetic resonance imaging contrast agent probes. J Biomed Nanotechnol 3:342–352

    Article  Google Scholar 

  47. Ananta JS, Matson ML, Tang AM, Mandal T, Lin S, Wong K, Wong ST, Wilson LJ (2009) Single-walled carbon nanotube materials as T2-weighted MRI contrast agents. J Phys Chem C 113(45):19369–19372

    Article  Google Scholar 

  48. Balasubramanian K, Burghard M (2006) Biosensors based on carbon nanotubes. Anal Bioanal Chem 385:452–468

    Article  Google Scholar 

  49. Wang J, Musameh M, Lin Y (2003) Solubilization of carbon nanotubes by Nafion toward the preparation of amperometric biosensors. J Am Chem Soc 125(9):2408–2409

    Article  Google Scholar 

  50. Hrapovic S, Liu Y, Male KB, Luong JHT (2004) Electrochemical biosensing platforms using platinum nanoparticles and carbon nanotubes. Anal Chem 76(4):1083–1088

    Article  Google Scholar 

  51. Tang H, Chen J, Yao S, Nie L, Deng G, Kuang Y (2004) Amperometric glucose biosensor based on adsorption of glucose oxidase at platinum nanoparticle-modified carbon nanotube electrode. Anal Biochem 331(1):89–97

    Article  Google Scholar 

  52. Gao M, Dai L, Wallace GG (2003) Biosensors based on aligned carbon nanotubes coated with inherently conducting polymers. Electroanalysis 15(13):1089–1094

    Article  Google Scholar 

  53. Salimi A, Compton RG, Hallaj R (2004) Glucose biosensor prepared by glucose oxidase encapsulated sol–gel and carbon-nanotube-modified basal plane pyrolytic graphite electrode. Anal Biochem 333(1):49–56

    Article  Google Scholar 

  54. Wu FH, Zhao GC, Wei XW (2002) Electrocatalytic oxidation of nitric oxide at multi-walled carbon nanotubes modified electrode. Electrochem Commun 4(9):690–694

    Article  Google Scholar 

  55. Wang J, Li M, Shi Z, Li N, Gu Z (2002) Direct electrochemistry of cytochrome c at a glassy carbon electrode modified with single-wall carbon nanotubes. Anal Chem 74(9):1993–1997

    Article  Google Scholar 

  56. Wu Y, Hu S (2005) The fabrication of a colloidal gold-carbon nanotubes composite film on a gold electrode and its application for the determination of cytochrome c. Colloids Surf B: Biointerfaces 41(4):299–304

    Article  Google Scholar 

  57. Abarrategi A, Gutiérrez MC, Moreno-Vicente C, Hortigüela MJ, Ramos V, López-Lacomba JL, Ferrer ML, del Monte F (2008) Multiwall carbon nanotube scaffolds for tissue engineering purposes. Biomaterials 29:94–102

    Article  Google Scholar 

  58. Shin SR, Bae H, Cha JM, Mun JY, Chen YC, Tekin H, Shin H, Farshchi S, Dokmeci MR, Tang S, Khademhosseini A (2012) Carbon nanotube reinforced hybrid microgels as scaffold materials for cell encapsulation. ACS Nano 6(1):362–372

    Article  Google Scholar 

  59. Wang SF, Shen L, Zhang WD, Tong YJ (2005) Preparation and mechanical properties of chitosan/carbon nanotubes composites. Biomacromolecules 6(6):3067–3072

    Article  Google Scholar 

  60. Hu H, Ni Y, Montana V, Haddon RC, Parpura V (2004) Chemically functionalized carbon nanotubes as substrates for neuronal growth. Nano Lett 4(3):507–511

    Article  Google Scholar 

  61. Correa-Duarte MA, Wagner N, Rojas-Chapana J, Morsczeck C, Thie M, Giersig M (2004) Fabrication and biocompatibility of carbon nanotube-based 3D networks as scaffolds for cell seeding and growth. Nano Lett 4(11):2233–2236

    Article  Google Scholar 

  62. MacDonald RA, Laurenzi BF, Viswanathan G, Aiavan PM, Stegemann JP (2005) Collagen-carbon nanotube composite materials as scaffolds in tissue engineering. J Biomed Mater Res A 74(3):489–496

    Google Scholar 

  63. Stout DA, Webster TJ (2012) Carbon nanotubes for stem cell control. Mater Today 15(7–8):312–318

    Article  Google Scholar 

  64. Veetil JV, Ye K (2009) Tailored carbon nanotubes for tissue engineering applications. Biotechnol Prog 25(3):709–721

    Article  Google Scholar 

  65. Pietroiusti A, Massimiani M, Fenoglio I, Colonna M, Valentini F, Palleschi G, Camaioni A, Magrini A, Siracusa G, Bergamaschi A, Sgambato A, Campagnolo L (2011) Low doses of pristine and oxidized carbon nanotubes affect mammalian embryonic development. ACS Nano 5(6):4624–4633

    Article  Google Scholar 

  66. Holt BD, Short PA, Rape AD, Wang Y-L, Islam MF, Dahl KN (2012) Carbon nanotubes reorganize actin structures in cells and ex vivo. ACS Nano 4(8):4872–4878

    Article  Google Scholar 

  67. Singh R, Pantarotto D, Lacerda L, Pastorin G, Klumpp C, Prato M, Bianco A, Kostarelos K (2006) Tissue biodistribution and blood clearance rates of intravenously administered carbon nanotube radiotracers. Proc Natl Acad Sci U S A 103(9):3357–3362

    Article  Google Scholar 

  68. Takanshi S, Hara K, Aoki K, Usui Y, Shimizu M, Haniu H, Ogihara N, Ishigaki N, Nakamura K, Okamoto M, Kobayashi S, Kato H, Sano K, Nishimura N, Tsutsumi H, Machida K, Saito N (2012) Carcinogenicity evaluation for the application of carbon nanotubes as biomaterials in rasH2 mice. Sci Rep 2(498):1–7

    Google Scholar 

  69. Nagai H, Toyokuni S (2012) Differences and similarities between carbon nanotubes and asbestos fibers during mesothelial carcinogenesis: shedding light on fiber entry mechanism. Cancer Sci 103(8):1378–1390

    Article  Google Scholar 

  70. Fisher C, Rider AE, Han ZJ, Kumar S, Levchenko I, Ostrikov KK (2012) Applications and nanotoxicity of carbon nanotubes and graphene in biomedicine. J Nanomater 2012:1–19

    Article  Google Scholar 

  71. Porter DW, Hubbs AF, Mercer RR, Wu N, Wolfarth MG, Sriram K, Leonard S, Battelli L, Schwegler-Berru D, Andrew M, Chen BT, Tsuruoka S, Endo M, Castranova V (2010) Mouse pulmonary dose- and time course-responses induced by exposure to multi-walled carbon nanotubes. Toxicology 269(2–3):136–147

    Article  Google Scholar 

  72. Kobayashi N, Nava M, Ema M, Endoh S, Maru J, Mizuno K, Nakanishi J (2010) Biological response and morphological assessment of individually dispersed multi-wall carbon nanotubes in the lung after intratracheal instillation in rats. Toxicology 276(3):143–153

    Article  Google Scholar 

  73. Liang G, Yin L, Zhang J, Liu R, Zhang T, Ye B, Pu Y (2010) Effects of subchronic exposure to multi-walled carbon nanotubes on mice. J Toxic Environ Health A 73:463–470

    Article  Google Scholar 

  74. Yang S-t, Guo W, Lin Y, Deng X-y, Wang H-f, Sun H-f, Liu Y-f, Wang X, Wang W, Chen M, Huang Y-p, Sun Y-p (2007) Biodistribution of pristine single-walled carbon nanotubes in vivo. J Phys Chem 111:17761–17764

    Google Scholar 

  75. Jain S, Thakare VS, Das M, Godugu C, Jain AK, Mathur R, Chuttani K, Mishra AK (2011) Toxicity of multiwalled carbon nanotubes with end defects critically depends on their functionalization density. Chem Res Toxicol 24:2028–2039

    Article  Google Scholar 

  76. Al-Jamal KT, Nunes A, Methven L, Ali-Boucetta H, Li S, Toma FM, Herrero MA, Al-Jamal WT, ten Eikelder HMM, Foster J, Mather S, Prato M, Bianco A, Kostarelos K (2012) Degree of chemical functionalization of carbon nanotubes determines tissue distribution and excretion profile. Angew Chem Int Ed 51:6389–6393

    Article  Google Scholar 

  77. Yang S-T, Wang X, Jia G, Gu Y, Wang T, Nie H, Ge C, Wang H, Liu Y (2008) Long-term accumulation and low toxicity of single-walled carbon nanotubes in intravenously exposed mice. Toxicol Lett 181:182–189

    Article  Google Scholar 

  78. MacGarvin M, Lambert B, Infante P, Greenberg M, Gee D, Koppe JG, Keys J, Farman J, Ibarreta D, Swan SH, Edquist LE, Pedersen KB, Semb A, Von Krauss MK, Harremoes P, Gilbertson M, Santillo D, Jonston P, Langston WJ, Bridges JW, Bridges O, Van Zwanenberg P, Millstone E (2001) Late lessons from early warnings: the precautionary principle 1896–2000. European Environment Agency

  79. Gaskell G, Stares S, Allansdottir A, Allum N, Castro P, Esmer Y, Fischler C, Jackson J, Kronberger N, Hampel J, Mejlgaard N, Quintanilha A, Rammer A, Revuelta G, Stoneman P, Torgersen H, Wagner W (2010) Europeans and biotechnology—winds of change? European Commission Directorate-General for Research Communication Unit

  80. Shrader-Frechette K (2007) Nanotoxicology and ethical conditions for informed consent. Nanoethics 1:47–56

    Article  Google Scholar 

  81. The World Medical Association (1964) Declaration of Helsinki—ethical principles for medical research involving human subjects. Adapted by the 18th WMA General Assembly, Helsinki, Finland, June 1964 http://www.wma.net/en/30publications/10policies/b3/

  82. Faden RR, Beauchamp TL (1987) A history and theory of informed consent. Oxford University Press, New York

    Google Scholar 

  83. Beauchamp TL (2011) Informed consent: its history, meaning, and present challenges. Camb Q Healthc Ethics 20(4):515–523

    Article  Google Scholar 

  84. Jamison A (2009) Can nanotechnology be just? On nanotechnology and the emerging movement for global justice. Nanoethics 3(2):129–136

    Article  Google Scholar 

  85. Van Niekerk AA (2004) Principles of global distributive justice: moving beyond Rawls and Buchanan. S Afr J Philos 23(2):171–194

    Google Scholar 

  86. Sass HM (1998) Ethics of the allocation of highly advanced medical technologies. Artif Organs 22(3):263–268

    Article  Google Scholar 

  87. Attfield R (1990) The global distribution of health care resources. J Med Ethics 16(3):153–156

    Article  Google Scholar 

  88. Shvedova AA, Kisin ER, Mercer R, Murray AR, Johnson VJ, Potapovich AI, Tyurina YY, Gorelik O, Arepalli S, Schwegler-Berry D, Hubbs AF, Antonini J, Evans DE, Ku B-K, Ramsey D, Maynard A, Kagan VE, Castranova V, Baron P (2005) Unusual inflammatory and fibronogenic pulmonary responses to single-walled carbon nanotubes in mice. Am J Physiol Lung Cell Mol Physiol 289:L698–L708

    Article  Google Scholar 

  89. McDermott R (2008) Medical decision making: lessons from psychology. Urol Oncol Semin Orig Investig 26(6):665–668

    Article  Google Scholar 

  90. Ooms G, Hammonds R (2010) Taking up Daniels’ challenge: the case for global health justice. Health Hum Rights 12(1):29–46

    Google Scholar 

  91. Norheim OF, Asada Y (2009) The ideal of equal health revisited: definitions and measures of inequity in health should be better integrated with theories of distributive justice. Int J Equity Health 8:40

    Article  Google Scholar 

  92. Finnvold JE (2006) Access to specialized health care for asthmatic children in Norway: the significance of parents’ educational background and social network. Soc Sci Med 63:1316–1327

    Article  Google Scholar 

  93. Jutel A (2009) Sociology of diagnosis: a preliminary review. Sociol Health Ill 31(2):278–299

    Article  Google Scholar 

  94. Spagnolo AG, Daloiso V (2009) Outlining ethical issues in nanotechnology. Bioethics 23(7):394–402

    Article  Google Scholar 

  95. Allhoff F (2009) The coming era of nanomedicine. Am J Bioeth 9(10):3–11

    Article  Google Scholar 

  96. Fisher E (2007) Ethnographic invention: probing the capacity of laboratory decisions. Nanoethics 1:155–165

    Article  Google Scholar 

  97. Schuurbiers D, Fisher E (2009) Lab-scale intervention. EMBO Rep 10(5):424–427

    Article  Google Scholar 

  98. Fisher E, Mahajan R (2006) Midstream modulation of nanotechnology in an academic laboratory. In Proceedings of IMECE2006: American Society of Mechanical Engineering Congress and Exposition, November 5–10. Chicago, IL, USA: ASME

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Julie Rasmussen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rasmussen, A.J., Ebbesen, M. Characteristics, Properties and Ethical Issues of Carbon Nanotubes in Biomedical Applications. Nanoethics 8, 29–48 (2014). https://doi.org/10.1007/s11569-014-0187-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11569-014-0187-9

Keywords

Navigation