NanoEthics

, Volume 3, Issue 1, pp 31–42 | Cite as

Self-Assembly, Self-Organization: Nanotechnology and Vitalism

Original Paper

Abstract

Over the past decades, self-assembly has attracted a lot of research attention and transformed the relations between chemistry, materials science and biology. The paper explores the impact of the current interest in self-assembly techniques on the traditional debate over the nature of life. The first section describes three different research programs of self-assembly in nanotechnology in order to characterize their metaphysical implications: (1) Hybridization (using the building blocks of living systems for making devices and machines) ; (2) Biomimetics (making artifacts mimicking nature); (3) Integration (a composite of the two previous strategies). The second section focused on the elusive boundary between self-assembly and self-organization tries to map out the various positions adopted by the promoters of self-assembly on the issue of vitalism.

Keywords

Biomimetics Hybridization Bionanotechnology Nature and artifact Chemistry Biology Cybernetics 

References

  1. 1.
    Atlan H (1972) L’organisation biologique et la théorie de l’information. Hermann, ParisGoogle Scholar
  2. 2.
    Atlan H (1979) Entre le cristal et la fumée. Seuil-Point sciencem, ParisGoogle Scholar
  3. 3.
    Atlan H, Cohen Irun R (2006) Self-organization and meaning in immunology. In: Feltz B, Crommelinck M, Goujon P (eds) Self-Organization and emergence in life sciences. Springer, The Netherlands, pp 121–139CrossRefGoogle Scholar
  4. 4.
    Ball P (2002) Natural Strategies for the molecular engineer. Nanotechnology 13:15–28. doi:10.1088/0957-4484/13/5/201 CrossRefGoogle Scholar
  5. 5.
    Ball P (2006) What chemists want to know. Nature 442(Aug):500–502. doi:10.1038/442500a CrossRefGoogle Scholar
  6. 6.
    Bensaude-Vincent B, Stengers I (1996) A history of chemistry. Harvard University Press, Cambridge MassGoogle Scholar
  7. 7.
    Bensaude-Vincent B, Arribart H, Bouligand Y, Sanchez C (2002) Chemists at the School of Nature. N J Chem 26:1–5. doi:10.1039/b108504m CrossRefGoogle Scholar
  8. 8.
    Bensaude-Vincent B, Guchet X (2007) Nanomachine: One word for three different paradigms , Technê, Res Philos Technol 10, n° 3, Spring 2007.Google Scholar
  9. 9.
    Bernard C (1878) Sixième Leçon in Leçons sur les phénomènes de la vie communs aux animaux et aux végétaux. Vrin, Paris. 1966Google Scholar
  10. 10.
    Berthelot M (1897) La synthèse chimique, 8th edn. Alcan, ParisGoogle Scholar
  11. 11.
    Boxer S (1991) Quoted in exploiting the nanotechnology of life. Sci 254(29):1308–1309Google Scholar
  12. 12.
    Brooke JH (1973) Organic synthesis and the unification of chemistry—a reappraisal. Br J Hist Sci 4:362–392Google Scholar
  13. 13.
    Breen TL, Tien J, Oliver SR, Hadzic T, Whitesides GM (1999) Design and self-assembly of open, regular, 3D mesostructures. Sci 284(7):48–951Google Scholar
  14. 14.
    Canguilhem G (1947) Machine et organisme, in La connaissance de la vie. Vrin Paris 1971:101–127Google Scholar
  15. 15.
    Drexler EK (1986) Engines of Creation, 2nd edn. Anchor Books, New York 1990.Google Scholar
  16. 16.
    Dupuy JP (2000) The mechanization of the mind. Princeton University Press, Princeton N.J.Google Scholar
  17. 17.
    Gould SJ, Lewontin RC (1979) The spandrels of San Marco and the Panglossian Paradigm: A critique of the adptationist programme. Proceedings of the royal society of London, Series B 205(1161):581–598CrossRefGoogle Scholar
  18. 18.
    Jones RL (2004) Soft Machines. Oxford University Press, Oxford, New-YorkGoogle Scholar
  19. 19.
    Jones RL Softmachines blog, http://www.softmachines.org/wordpress/?m=200511 (accessed January 2009)
  20. 20.
    Keren K, Berman RS, Buchstab E, Sivan U, Braun E (2003) DNA-templated carbon nanotube field-effect transistor. Sci 302:1380–1382. doi:10.1126/science.1091022 CrossRefGoogle Scholar
  21. 21.
    Kirschner M, Gerhart M, Mitchison T (2000) Molecular vitalism. Cell 100(7):79–88CrossRefGoogle Scholar
  22. 22.
    Lehn JM (1995) Supramolecular Chemistry. VCH, WeinheimCrossRefGoogle Scholar
  23. 23.
    Lehn JM (1999) Dynamic combinatorial chemistry and virtual combinatorial libraries. Chem Eur J 5(9):2455–2463. doi:10.1002/(SICI)1521-3765(19990903)5:9≤2455::AID-CHEM2455≥3.0.CO;2-H CrossRefGoogle Scholar
  24. 24.
    Lehn JM (2002) Toward self-organization and complex matter. Sci 295(29):2400–2403. doi:10.1126/science.1071063 CrossRefGoogle Scholar
  25. 25.
    Lehn JM (2004) “Entretien avec Jean-marie Lehn sur les possibles naturels en chimie”, Revue de métaphysique et de morale, N°3, p. 371–380.Google Scholar
  26. 26.
    Lehn JM (2006) From supramolecular chemistry to molecular dynamics, Plenary Lecture at the First European Chemistry Congress, Budapest, 27–31 August, 2006.Google Scholar
  27. 27.
    Livet Pierre, 1985, “Cybernétique, auto-organisation et néo-connectionisme”, Cahiers du CREA, N°8, 105–153Google Scholar
  28. 28.
    Maasen S (2006) The assembled self of nanotechnology: the career of self-assembly as a metaphor, paper presented at EASST Conference, Lausanne, Aug 2006.Google Scholar
  29. 29.
    Montemagno CD (2001) Nanomachines: a roadmap for realizing the vision. J Nanopart Res 3:1–3. doi:10.1023/A:1011452612805 CrossRefGoogle Scholar
  30. 30.
    Montemagno CD (2004) Integrative technology for the 21st century. In Roco M, & Montemagno CD eds The co-evolution of human potential and converging technologies. Annals New York Academic Science 1013:38–49. doi:10.1196/annals.1305.004
  31. 31.
    Newman WR (2004) Promethean ambitions: alchemy and the quest to perfect nature. University of Chicago Press, ChicagoGoogle Scholar
  32. 32.
    Ramberg P (2000) The death of vitalism and the birth of organic chemistry: Wölher’s urea synthesis and the disciplinary identity of chemistry. Ambix 47:170–195Google Scholar
  33. 33.
    Roco M Bainbridge W. (2002) Converging technologies for improving human performance nanotechnology, biotechnology, information technology and cognitive science national science foundation report, Arlington.Google Scholar
  34. 34.
    Sarikaya, Aksay (1995) Biomimetics: design and processing of materials. AIP Press, WoodburyGoogle Scholar
  35. 35.
    Simondon G (1989) Du mode d’existence des objets techniques. Aubier, ParisGoogle Scholar
  36. 36.
    Stengers Isabelle (1985) Les généalogies de l’auto organisation, Cahiers du CREA, N° 8, 7–104.Google Scholar
  37. 37.
    Stengers I (1997) Cosmopolitiques, Paris, éditions la découverte, 7 volumes; vol. 6 La vie et l’artifice: Visages de l’émergence.Google Scholar
  38. 38.
    Whitesides GM (2003) The right size in nanobiotechnology. Nat Biotechnol 21:1161–1165CrossRefGoogle Scholar
  39. 39.
    Whitesides GM (2004) Taking chemistry in new directions. Angew Chem Int Ed 43:3632–3641. doi:10.1002/anie.200330076 CrossRefGoogle Scholar
  40. 40.
    Whitesides GM, Boncheva M (2002) Beyond molecules: self-assembly of mesoscopic and macroscopic components. Proc Natl Acad Sci U S A 99:4769–4774. doi:10.1073/pnas.082065899 CrossRefGoogle Scholar
  41. 41.
    Whitesides GM, Grzybowski B (2002) Self-assembly at all scales. Science 295:2418–2421. doi:10.1126/science.1070821 CrossRefGoogle Scholar
  42. 42.
    Shuguang Z (2003) Fabrication of novel biomaterials through molecular self-assembly. Nat Biotechnol 21(10):1171–1178. doi:10.1038/nbt874 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Université Paris OuestNanterreFrance

Personalised recommendations