Skip to main content
Log in

An excellent derivative-free multiple-zero finding numerical technique of optimal eighth order convergence

  • Published:
ANNALI DELL'UNIVERSITA' DI FERRARA Aims and scope Submit manuscript

Abstract

A number of higher order Newton-like methods (i.e. the methods requiring both function and derivative evaluations) are available in literature for multiple zeros of a nonlinear function. However, higher order Traub-Steffensen-like methods (i.e. the methods requiring only function evaluations) for computing multiple zeros are rare in literature. Traub-Steffensen-like iterations are important in the circumstances when derivatives are complicated to evaluate or expensive to compute. Motivated by this fact, here we present an efficient and rapid-converging Traub-Steffensen-like algorithm to locate multiple zeros. The method achieves eighth order convergence by using only four function evaluations per iteration, therefore, this convergence rate is optimal. Performance is demonstrated by applying the method on different problems including some real life models. The computed results are compared with that of existing optimal eighth-order Newton-like techniques to reveal the computational efficiency of the new approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akram, S., Zafar, F., Yasmin, N.: An optimal eighth-order family of iterative methods for multiple roots. Mathermatics (2019). https://doi.org/10.3390/math7080672

    Article  Google Scholar 

  2. Argyros, I.K.: Convergence and Applications of Newton-Type Iterations. Springer-Verlag, New York, NY, USA (2008)

    MATH  Google Scholar 

  3. Argyros, I.K., Magreñán, Á.A.: Iterative Methods and Their Dynamics with Applications. CRC Press, New York, NY, USA (2017)

    Book  Google Scholar 

  4. Behl, R., Alshomrani, A.S., Motsa, S.S.: An optimal scheme for multiple roots of nonlinear equations with eighth-order convergence. J. Math. Chem. 56, 2069–2084 (2018)

    Article  MathSciNet  Google Scholar 

  5. Behl, R., Cordero, A., Motsa, S.S., Torregrosa, J.R.: An eighth-order family of optimal multiple root finders and its dynamics. Numer. Algor. 77, 1249–1272 (2018)

    Article  MathSciNet  Google Scholar 

  6. Behl, R., Zafar, F., Alshormani, A.S., Junjua, M.U.D., Yasmin, N.: An optimal eighth-order scheme for multiple zeros of unvariate functions. Int. J. Comput. Meth. (2018). https://doi.org/10.1142/S0219876218430028

    Article  MATH  Google Scholar 

  7. Chapra, S.C., Canale, R.P.: Numerical Methods for Engineers. McGraw-Hill Book Company, New York (1988)

    Google Scholar 

  8. Constantinides, A., Mostoufi, N.: Numerical Methods for Chemical Engineers with MATLAB Applications. Upper Saddle River, Prentice Hall PTR (1999)

    Google Scholar 

  9. Dong, C.: A family of multipoint iterative functions for finding multiple roots of equations. Int. J. Comput. Math. 21, 363–367 (1987)

    Article  Google Scholar 

  10. Douglas, J.M.: Process Dynamics and Control. Prentice Hall, Englewood Cliffs (1972)

    Google Scholar 

  11. Geum, Y.H., Kim, Y.I., Neta, B.: A class of two-point sixth-order multiplezero finders of modified double-Newton type and their dynamics. Appl. Math. Comput. 270, 387–400 (2015)

    MathSciNet  MATH  Google Scholar 

  12. Geum, Y.H., Kim, Y.I., Neta, B.: Constructing a family of optimal eighth-order modified Newton-type multiple-zero finders along with the dynamics behind their purely imaginary extraneous fixed points. J. Comp. Appl. Math. 333, 131–156 (2018)

    Article  MathSciNet  Google Scholar 

  13. Hansen, E., Patrick, M.: A family of root finding methods. Numer. Math. 27, 257–269 (1977)

    Article  MathSciNet  Google Scholar 

  14. Hoffman, J.D.: Numerical Methods for Engineers and Scientists. McGraw-Hill Book Company, New York, NY, USA (1992)

    MATH  Google Scholar 

  15. Kung, H.T., Traub, J.F.: Optimal order of one-point and multipoint iteration. J. Assoc. Comput. Mach. 21, 643–651 (1974)

    Article  MathSciNet  Google Scholar 

  16. Osada, N.: An optimal multiple root-finding method of order three. J. Comput. Appl. Math. 51, 131–133 (1994)

    Article  MathSciNet  Google Scholar 

  17. Schröder, E.: Über unendlich viele Algorithmen zur Auflösung der Gleichungen. Math. Ann. 2, 317–365 (1870)

    Article  MathSciNet  Google Scholar 

  18. Sharma, J.R., Kumar, S., Jäntschi, L.: On a class of optimal fourth order multiple root solvers without using derivatives. Symmetry 11(1452), 1–14 (2019)

    Google Scholar 

  19. Sharma, J.R., Sharma, R.: Modified Jarratt method for computing multiple roots. Appl. Math. Comput. 217, 878–881 (2010)

    MathSciNet  MATH  Google Scholar 

  20. Traub, J.F.: Iterative Methods for the Solution of Equations. Chelsea Publishing Company, New York, NY, USA (1982)

    MATH  Google Scholar 

  21. Weerakoon, S., Fernando, T.G.I.: A variant of Newton’s method with accelerated third-order convergence. Appl. Math. Lett. 13, 87–93 (2000)

    Article  MathSciNet  Google Scholar 

  22. Wolfram, S.: The Mathematica Book, 5th edn. Wolfram Media, Champaign, IL, USA (2003)

    MATH  Google Scholar 

  23. Zafar, F., Cordero, A., Quratulain, R., Torregrosa, J.R.: Optimal iterative methods for finding multiple roots of nonlinear equations using free parameters. J. Math. Chem. 56, 1884–1901 (2017)

    Article  MathSciNet  Google Scholar 

  24. Zafar, F., Cordero, A., Sultana, S., Torregrosa, J.R.: Optimal iterative methods for finding multiple roots of nonlinear equations using weight functions and dynamics. J. Comp. Appl. Math. 342, 352–374 (2018)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Janak Raj Sharma.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, J.R., Kumar, S. An excellent derivative-free multiple-zero finding numerical technique of optimal eighth order convergence. Ann Univ Ferrara 68, 161–186 (2022). https://doi.org/10.1007/s11565-022-00394-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11565-022-00394-w

Keywords

Mathematics Subject Classification:

Navigation