Higher derivations and Posner’s second theorem for semiprime rings


Let \((d_i)_{i\in \mathbb {N}}\) and \((\delta _j)_{j\in \mathbb {N}}\) be two higher derivations of order m and n respectively on semiprime ring R such that \(d_m(x)x-x\delta _n(x)\in Z(R)\) for all \(x\in I\), where I be an ideal of R. In this article we generalize Posner’s second theorem for higher derivation and prove that either R is commutative or some linear combination of \((\delta _j)\) sends Z(R) to zero.

This is a preview of subscription content, access via your institution.


  1. 1.

    Bakhturin, Y., Behr, E., Kostrikin, A., Bokhut, L., Shafarevich, I., Kharchenko, V., L’vov, I., Ol’shanskij, A.: Algebra II: Noncommutative Rings Identities. Encyclopaedia of Mathematical Sciences. Springer, Berlin (2012)

    Google Scholar 

  2. 2.

    Bell, H.E., Martindale III, W.S.: Centralizing mappings of semiprime rings. Can. Math. Bull. 30(1), 92–101 (1987)

    MathSciNet  Article  Google Scholar 

  3. 3.

    Brešar, M.: Centralizing mappings and derivations in prime rings. J. Algebra 156(2), 385–394 (1993)

  4. 4.

    Chuang, C.L.: GPIs having coefficients in Utumi quotient rings. Proc. Am. Math. Soc. 103(3), 723–728 (1988)

    MathSciNet  Article  Google Scholar 

  5. 5.

    De Filippis, V., Tammam El Sayiad, M.S.: A note on Posner’s theorem with generalized derivations on Lie ideals. Rend. Semin. Mat. Univ. Padova 122, 55–64 (2009)

    MathSciNet  Article  Google Scholar 

  6. 6.

    Deng, Q., Bell, H.E.: On derivations and commutativity in semiprime rings. Commun. Algebra 23(10), 3705–3713 (1995)

    MathSciNet  Article  Google Scholar 

  7. 7.

    Dhara, B., Ali, S.: On n-centralizing generalized derivations in semiprime rings with applications to \(C^*\)-algebras. J. Algebra Appl. 11(6), 1250111, 11 (2012)

    MathSciNet  Article  Google Scholar 

  8. 8.

    Ferrero, M., Haetinger, C.: Higher derivations of semiprime rings. Commun. Algebra 30(5), 2321–2333 (2002)

    MathSciNet  Article  Google Scholar 

  9. 9.

    Haetinger, C.: Derivações de ordem superior em anéis primos e semiprimos. Ph.D Thesis, IMUFRGS, UFRGS, Porto Alegre, Brazil (2000)

  10. 10.

    Herstein, I.N.: Rings with Involution. University of Chicago Press, Chicago (1976)

    Google Scholar 

  11. 11.

    Jacobson, N.: Basic algebra. II, 2nd edn. W. H. Freeman and Company, New York (1989)

    Google Scholar 

  12. 12.

    Lam, T.Y.: Lectures on Modules and Rings. Graduate Texts in Mathematics, vol. 189. Springer, New York (1999)

    Google Scholar 

  13. 13.

    Lanski, C.: Differential identities, Lie ideals, and Posner’s theorems. Pac. J. Math. 134(2), 275–297 (1988)

    MathSciNet  Article  Google Scholar 

  14. 14.

    Lanski, C.: An Engel condition with derivation for left ideals. Proc. Am. Math. Soc. 125(2), 339–345 (1997)

    MathSciNet  Article  Google Scholar 

  15. 15.

    Lee, T.K.: Posner’s theorem for \((\sigma,\tau )\)-derivations and -centralizing maps. Houst. J. Math. 30(2), 309–320 (2004)

    MathSciNet  MATH  Google Scholar 

  16. 16.

    Lee, T.K., Lee, T.C.: Commuting additive mappings in semiprime rings. Bull. Inst. Math. Acad. Sin. 24(4), 259–268 (1996)

    MathSciNet  MATH  Google Scholar 

  17. 17.

    Martindale, W.S.: Lie isomorphisms of prime rings. Trans. Am. Math. Soc. 142, 437–455 (1969)

    MathSciNet  Article  Google Scholar 

  18. 18.

    McCoy, N.H.: The Theory of Rings. The Macmillan Co., New York (1964)

    Google Scholar 

  19. 19.

    Oukhtite, L.: Posner’s second theorem for Jordan ideals in rings with involution. Expos. Math. 29(4), 415–419 (2011)

    MathSciNet  Article  Google Scholar 

  20. 20.

    Posner, E.C.: Derivations in prime rings. Proc. Am. Math. Soc. 8, 1093–1100 (1957)

    MathSciNet  Article  Google Scholar 

  21. 21.

    Schmidt, F.K., Hasse, H.: Noch eine begründung der theorie der höheren differentialquotienten in einem algebraischen funktionenkörper einer unbestimmten.(nach einer brieflichen mitteilung von fk schmidt in jena). J. Reine Angew. Math. 1937(177), 215–237 (1937)

    Article  Google Scholar 

Download references


The author is highly thankful to the referee(s) for valuable suggestions and comments.


Funding was provided by Science and Engineering Research Board (Grant No. EMR/2016/001550).

Author information



Corresponding author

Correspondence to Balchand Prajapati.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Prajapati, B. Higher derivations and Posner’s second theorem for semiprime rings. Ann Univ Ferrara (2020). https://doi.org/10.1007/s11565-020-00352-4

Download citation


  • Semiprime ring
  • Extended centroid
  • Higher derivation

Mathematics Subject Classification

  • 16W25
  • 16N60
  • 16R50