Abstract
Let \((d_i)_{i\in \mathbb {N}}\) and \((\delta _j)_{j\in \mathbb {N}}\) be two higher derivations of order m and n respectively on semiprime ring R such that \(d_m(x)x-x\delta _n(x)\in Z(R)\) for all \(x\in I\), where I be an ideal of R. In this article we generalize Posner’s second theorem for higher derivation and prove that either R is commutative or some linear combination of \((\delta _j)\) sends Z(R) to zero.
This is a preview of subscription content, access via your institution.
References
- 1.
Bakhturin, Y., Behr, E., Kostrikin, A., Bokhut, L., Shafarevich, I., Kharchenko, V., L’vov, I., Ol’shanskij, A.: Algebra II: Noncommutative Rings Identities. Encyclopaedia of Mathematical Sciences. Springer, Berlin (2012)
- 2.
Bell, H.E., Martindale III, W.S.: Centralizing mappings of semiprime rings. Can. Math. Bull. 30(1), 92–101 (1987)
- 3.
Brešar, M.: Centralizing mappings and derivations in prime rings. J. Algebra 156(2), 385–394 (1993)
- 4.
Chuang, C.L.: GPIs having coefficients in Utumi quotient rings. Proc. Am. Math. Soc. 103(3), 723–728 (1988)
- 5.
De Filippis, V., Tammam El Sayiad, M.S.: A note on Posner’s theorem with generalized derivations on Lie ideals. Rend. Semin. Mat. Univ. Padova 122, 55–64 (2009)
- 6.
Deng, Q., Bell, H.E.: On derivations and commutativity in semiprime rings. Commun. Algebra 23(10), 3705–3713 (1995)
- 7.
Dhara, B., Ali, S.: On n-centralizing generalized derivations in semiprime rings with applications to \(C^*\)-algebras. J. Algebra Appl. 11(6), 1250111, 11 (2012)
- 8.
Ferrero, M., Haetinger, C.: Higher derivations of semiprime rings. Commun. Algebra 30(5), 2321–2333 (2002)
- 9.
Haetinger, C.: Derivações de ordem superior em anéis primos e semiprimos. Ph.D Thesis, IMUFRGS, UFRGS, Porto Alegre, Brazil (2000)
- 10.
Herstein, I.N.: Rings with Involution. University of Chicago Press, Chicago (1976)
- 11.
Jacobson, N.: Basic algebra. II, 2nd edn. W. H. Freeman and Company, New York (1989)
- 12.
Lam, T.Y.: Lectures on Modules and Rings. Graduate Texts in Mathematics, vol. 189. Springer, New York (1999)
- 13.
Lanski, C.: Differential identities, Lie ideals, and Posner’s theorems. Pac. J. Math. 134(2), 275–297 (1988)
- 14.
Lanski, C.: An Engel condition with derivation for left ideals. Proc. Am. Math. Soc. 125(2), 339–345 (1997)
- 15.
Lee, T.K.: Posner’s theorem for \((\sigma,\tau )\)-derivations and -centralizing maps. Houst. J. Math. 30(2), 309–320 (2004)
- 16.
Lee, T.K., Lee, T.C.: Commuting additive mappings in semiprime rings. Bull. Inst. Math. Acad. Sin. 24(4), 259–268 (1996)
- 17.
Martindale, W.S.: Lie isomorphisms of prime rings. Trans. Am. Math. Soc. 142, 437–455 (1969)
- 18.
McCoy, N.H.: The Theory of Rings. The Macmillan Co., New York (1964)
- 19.
Oukhtite, L.: Posner’s second theorem for Jordan ideals in rings with involution. Expos. Math. 29(4), 415–419 (2011)
- 20.
Posner, E.C.: Derivations in prime rings. Proc. Am. Math. Soc. 8, 1093–1100 (1957)
- 21.
Schmidt, F.K., Hasse, H.: Noch eine begründung der theorie der höheren differentialquotienten in einem algebraischen funktionenkörper einer unbestimmten.(nach einer brieflichen mitteilung von fk schmidt in jena). J. Reine Angew. Math. 1937(177), 215–237 (1937)
Acknowledgements
The author is highly thankful to the referee(s) for valuable suggestions and comments.
Funding
Funding was provided by Science and Engineering Research Board (Grant No. EMR/2016/001550).
Author information
Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Prajapati, B. Higher derivations and Posner’s second theorem for semiprime rings. Ann Univ Ferrara (2020). https://doi.org/10.1007/s11565-020-00352-4
Received:
Accepted:
Published:
Keywords
- Semiprime ring
- Extended centroid
- Higher derivation
Mathematics Subject Classification
- 16W25
- 16N60
- 16R50