Skip to main content
Log in

Numerical dynamics of nonstandard finite difference schemes for a Logistics model with feedback control

  • Published:
ANNALI DELL'UNIVERSITA' DI FERRARA Aims and scope Submit manuscript

Abstract

In this paper, we construct nonstandard finite difference (NSFD) schemes that preserve essential qualitative properties of a Logistics model with feedback control using the Mickens’ methodology. These properties of the model include positivity of solutions and stability of equilibrium points. Dynamical properties of the proposed NSFD schemes are rigorously investigated. The results show that the constructed nonstandard schemes preserve the essential properties of the continuous model for all finite step sizes. Consequently, we obtain NSFD schemes which are dynamically consistent with the continuous model. Especially, the constructed NSFD schemes become exact finite difference ones in some special cases. Besides, some numerical simulations are performed to validate the theoretical results as well as the advantages of the proposed NSFD schemes. The numerical simulations also indicate that the NSFD schemes are effective and appropriate to solve the continuous model. Meanwhile, the standard finite difference schemes such as the Euler scheme, the second order and fourth order Runge–Kutta schemes can generate numerical solutions that are completely different from the solutions of the continuous model and therefore, they fail to correctly reflect the correct behavior of the continuous model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Adekanye, O., Washington, T.: Nonstandard finite difference scheme for a tacoma narrows bridge model. Appl. Math. Model. (2018). https://doi.org/10.1016/j.apm.2018.05.027

    Article  MathSciNet  Google Scholar 

  2. Allen, J.L.S.: An Introduction to Mathematical Biology. Pearson, London (2006)

    Google Scholar 

  3. Anguelov, R., Lubuma, J.M.-S.: Nonstandard finite difference method by nonlocal approximations. Math. Comput. Simul. 61, 465–475 (2003)

    Article  MathSciNet  Google Scholar 

  4. Anguelov, R., Dumont, Y., Lubuma, J.M.-S., Shillor, M.: Dynamically consistent nonstandard finite difference schemes for epidemiological models. J. Comput. Appl. Math. 255, 161–182 (2014)

    Article  MathSciNet  Google Scholar 

  5. Anguelov, R., Kama, P., Lubuma, J.M.-S.: On non-standard finite difference models of reaction–diffusion equations. J. Comput. Appl. Math. 175, 11–29 (2005)

    Article  MathSciNet  Google Scholar 

  6. Ascher, U.M., Petzold, L.R.: Computer Methods for Ordinary Differential Equations and Differential–Algebraic Equations. Society for Industrial and Applied Mathematics Philadelphia, Philadelphia (1998)

    Book  Google Scholar 

  7. Chapwanya, M., Lubuma, J.M.-S., Mickens, R.E.: Positivity–preserving nonstandard finite difference schemes for cross–diffusion equations in biosciences. Comput. Math. Appl. 68, 1071–1082 (2014)

    Article  MathSciNet  Google Scholar 

  8. Chapwanya, M., Lubuma, J.M.-S., Mickens, R.E.: Nonstandard finite difference schemes for Michaelis–Menten type reaction–diffusion equations. Numer. Methods Partial Differ. Equ. 29(1), 337–360 (2013)

    Article  MathSciNet  Google Scholar 

  9. Chapwanya, M., Lubuma, J.M.-S., Mickens, R.E.: From enzyme kinetics to epidemiological models with Michaelis-Menton contact rate: design of nonstandard finite difference schemes. Comput. Math. Appl. 64, 201–213 (2012)

    Article  MathSciNet  Google Scholar 

  10. Chapwanya, M., Jejeniwa, O.A., Appadu, A.R., Lubuma, J.M.-S.: An explicit nonstandard finite difference scheme for the FitzHugh–Nagumo equations. Int. J. Comput. Math. (2019). https://doi.org/10.1080/00207160.2018.1546849

    Article  MathSciNet  Google Scholar 

  11. Chen, L., Sun, J.: Global stability of an SI epidemic model with feedback controls. Appl. Math. Lett. 28, 53–55 (2014)

    Article  MathSciNet  Google Scholar 

  12. Chen, L., Chen, F.: Global stability of a Leslie–Gower predator–prey model with feedback controls. Appl. Math. Lett. 22, 1330–1334 (2009)

    Article  MathSciNet  Google Scholar 

  13. Dang, Q.A., Hoang, M.T., Trejos, D.Y., Valverde, J.C.: Feedback control variables to restrain the Babesiosis disease. Math. Methods Appl. Sci. (2019). https://doi.org/10.1002/mma.5877

    Article  MathSciNet  MATH  Google Scholar 

  14. Dang, Q.A., Hoang, M.T.: Dynamically consistent discrete metapopulation model. J. Differ. Equ. Appl. 22, 1325–1329 (2016)

    Article  MathSciNet  Google Scholar 

  15. Dang, Q.A., Hoang, M.T.: Lyapunov direct method for investigating stability of nonstandard finite difference schemes for metapopulation models. J. Differ. Equ. Appl. 24, 32–47 (2018)

    Article  MathSciNet  Google Scholar 

  16. Dang, Q.A., Hoang, M.T.: Complete global stability of a metapopulation model and its dynamically consistent discrete models. Qual. Theory Dyn. Syst. 18, 461–475 (2019)

    Article  MathSciNet  Google Scholar 

  17. Dang, Q.A., Hoang, M.T.: Exact finite difference schemes for three-dimensional linear systems with constant coefficients. Vietnam J. Math. 46, 471–492 (2018)

    Article  MathSciNet  Google Scholar 

  18. Dang, Q.A., Hoang, M.T.: Nonstandard finite difference schemes for a general predator–prey system. J. Comput. Sci. 36, 101015 (2019)

    Article  MathSciNet  Google Scholar 

  19. Dang, Q.A., Hoang, M.T., Dang, Q.L.: Nonstandard finite difference schemes for solving a modified epidemiological model for computer viruses. J. Comput. Sci. Cybern. 32(2), 171–185 (2018). https://doi.org/10.15625/1813-9663/32/2/13078

    Article  Google Scholar 

  20. Dang, Q.A., Hoang, M.T.: Positive and elementary stable explicit nonstandard Runge–Kutta methods for a class of autonomous dynamical systems. Int. J. Comput. Math. (2019). https://doi.org/10.1080/00207160.2019.1677895

    Article  Google Scholar 

  21. Dimitrov, D.T., Kojouharov, H.V.: Stability–preserving finite–difference methods for general multi-dimensional autonomous dynamical systems. Int. J. Numer. Anal. Model. 4(2), 280–290 (2007)

    MathSciNet  MATH  Google Scholar 

  22. Dimitrov, D.T., Kojouharov, H.V.: Nonstandard finite difference schemes for general two-dimensional autonomous dynamical systems. Appl. Math. Lett. 18, 769–774 (2005)

    Article  MathSciNet  Google Scholar 

  23. Dimitrov, D.T., Kojouharov, H.V.: Positive and elementary stable nonstandard numerical methods with applications to predator–prey models. J. Comput. Appl. Math. 189, 98–108 (2006)

    Article  MathSciNet  Google Scholar 

  24. Dimitrov, D.T., Kojouharov, H.V.: Nonstandard finite–difference methods for predator–prey models with general functional response. Math. Comput. Simul. 78, 1–11 (2008)

    Article  MathSciNet  Google Scholar 

  25. Egbelowo, O., Harley, C., Jacobs, B.: Nonstandard finite difference method applied to a linear pharmacokinetics model. Bioengineering 4, 40 (2017)

    Article  Google Scholar 

  26. Egbelowo, O.: Nonlinear elimination of drugs in one-compartment pharmacokinetic models: nonstandard finite difference approach for various routes of administration. Math. Comput. Appl. 23(2), 27 (2018)

    MathSciNet  Google Scholar 

  27. Egbelowo, O.F.: Nonstandard finite difference approach for solving 3-compartment pharmacokinetic models. Int. J. Numer. Methods Biomed. Eng. 34, e3114 (2018). https://doi.org/10.1002/cnm.3114

    Article  MathSciNet  Google Scholar 

  28. Elaydi, S.: An Introduction to Difference Equations. Springer, Berlin (2005)

    MATH  Google Scholar 

  29. Fan, Y.H., Wang, L.L.: Global asymptotical stability of a Logistic model with feedback control. Nonlinear Anal. Real World Appl. 11, 2686–2697 (2010)

    Article  MathSciNet  Google Scholar 

  30. Gopalsamy, K., Weng, P.X.: Feedback regulation of Logistic growth. Int. J. Math. Sci. 16, l77–l92 (1993)

    Article  MathSciNet  Google Scholar 

  31. Hoang, M.T., Nagy, A.M.: Uniform asymptotic stability of a Logistic model with feedback control of fractional order and nonstandard finite difference schemes. Chaos Solitons Fractals 123, 24–34 (2019)

    Article  MathSciNet  Google Scholar 

  32. Hoang, M.T., Egbelowo, O.F.: Nonstandard finite difference schemes for solving an SIS epidemic model with standard incidence. Rend. Circolo Mat. Palermo Ser. (2019). https://doi.org/10.1007/s12215-019-00436-x

    Article  Google Scholar 

  33. Korpusik, A.: A nonstandard finite difference scheme for a basic model of cellular immune response to viral infection. Commun. Nonlinear Sci. Numer. Simul. 43, 369–384 (2017)

    Article  MathSciNet  Google Scholar 

  34. Li, H.L., Zhang, L., Teng, Z., Jiang, Y.L., Muhammadhaji, A.: Global stability of an SI epidemic model with feedback controls in a patchy environment. Appl. Math. Comput. 321, 372–384 (2018)

    MathSciNet  MATH  Google Scholar 

  35. Lin, Q.: Stability analysis of a single species logistic model with Allee effect and feedback control. Adv. Differ. Equ. 2018, 190 (2018). https://doi.org/10.1186/s13662-018-1647-2

    Article  MathSciNet  MATH  Google Scholar 

  36. Liao, L.S.: Feedback regulation of a Logistic growth with variable coefficients. J. Math. Anal. Appl. 259(2), 489–500 (2001)

    Article  MathSciNet  Google Scholar 

  37. Mickens, R.E.: Applications of Nonstandard Finite Difference Schemes. World Scientific, Singapore (2000)

    Book  Google Scholar 

  38. Mickens, R.E.: Nonstandard Finite Difference Models of Differential Equations. World Scientific, Singapore (1993)

    Book  Google Scholar 

  39. Mickens, R.E.: Nonstandard finite difference schemes for differential equations. J. Differ. Equ. Appl. 8, 823–847 (2012)

    Article  MathSciNet  Google Scholar 

  40. Mickens, R.E.: Advances in the Applications of Nonstandard Finite Difference Schemes. World Scientific, Singapore (2006)

    Google Scholar 

  41. Mickens, R.E.: A nonstandard finite–difference scheme for the Lotka–Volterra system. Appl. Numer. Math. 45, 309–314 (2003)

    Article  MathSciNet  Google Scholar 

  42. Patidar, K.C.: Nonstandard finite difference methods: recent trends and further developments. J. Differ. Equ. Appl. 22, 817–849 (2016)

    Article  MathSciNet  Google Scholar 

  43. Roeger, L.-I.W.: Dynamically Consistent Discrete-Time Lotka–Volterra Competition Models. Discrete and Continuous Dynamical Systems. In: Proceedings of the 7th AIMS International Conference, Arlington, Supplement, pp. 650-658 (2009)

  44. Wood, D.T., Kojouharov, H.V.: A class of nonstandard numerical methods for autonomous dynamical systems. Appl. Math. Lett. 50, 78–82 (2016)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors thank the anonymous referees for useful comments that led to a great improvement of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manh Tuan Hoang.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hoang, M.T., Egbelowo, O.F. Numerical dynamics of nonstandard finite difference schemes for a Logistics model with feedback control. Ann Univ Ferrara 66, 51–65 (2020). https://doi.org/10.1007/s11565-020-00338-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11565-020-00338-2

Keywords

Mathematics Subject Classification

Navigation