Exponential stabilization for porous elastic system with one boundary dissipation


In this paper, we consider the one-dimensional porous elastic system with mixed dissipation term at the point \(x=0\) acting only on the volumetric fraction of the system. We prove that the operator \({\mathcal {A}}\) associated with the problem is an infinitesimal generator of a \(C_0\)–semigroup of contractions and we prove the exponential stability if an important restriction is imposed on the constitutive coefficients.

This is a preview of subscription content, access via your institution.


  1. 1.

    Goodman, M.A., Cowin, S.C.: A continuum theory for granular materials. Arch. Ration. Mech. Anal. 44(4), 249–266 (1972). https://doi.org/10.1007/bf00284326

    MathSciNet  Article  MATH  Google Scholar 

  2. 2.

    Nunziato, J.W., Cowin, S.C.: A nonlinear theory of elastic materials with voids. Arch. Ration. Mech. Anal. 72(2), 175–201 (1979). https://doi.org/10.1007/bf00249363

    MathSciNet  Article  MATH  Google Scholar 

  3. 3.

    Quintanilla, R.: Slow decay for one-dimensional porous dissipation elasticity. Appl. Math. Lett. 16(4), 487–491 (2003). https://doi.org/10.1016/s0893-9659(03)00025-9

    MathSciNet  Article  MATH  Google Scholar 

  4. 4.

    Dieudonné, J.: La théorie analytique des polynômes d’une variable (à coefficients quelconques). Gauthier-Villars, Paris (1938)

    MATH  Google Scholar 

  5. 5.

    Santos, M.L., Campelo, A.D.S., Júnior, D.S.A.: Rates of decay for porous elastic system weakly dissipative. Acta Appl. Math. 151(1), 1–26 (2017). https://doi.org/10.1007/s10440-017-0100-y

    MathSciNet  Article  MATH  Google Scholar 

  6. 6.

    Magaña, A., Quintanilla, R.: On the time decay of solutions in one-dimensional theories of porous materials. Int. J. Solids Struct. 43(11–12), 3414–3427 (2006). https://doi.org/10.1016/j.ijsolstr.2005.06.077

    MathSciNet  Article  MATH  Google Scholar 

  7. 7.

    Feng, B.: On the decay rates for a one-dimensional porous elasticity system with past history. Commun. Pure Appl. Anal. (2019). https://doi.org/10.3934/cpaa.2019130

    MathSciNet  Article  Google Scholar 

  8. 8.

    Santos, M.L., Júnior, D.S.A.: On porous-elastic system with localized damping. Zeitschrift für angewandte Mathematik und Physik (2016). https://doi.org/10.1007/s00033-016-0622-6

    Article  MATH  Google Scholar 

  9. 9.

    Santos, M.L., Júnior, D.S.A.: On the porous-elastic system with Kelvin–Voigt damping. J. Math. Anal. Appl. 445(1), 498–512 (2017). https://doi.org/10.1016/j.jmaa.2016.08.005

    MathSciNet  Article  MATH  Google Scholar 

  10. 10.

    Muñoz-Rivera, J., Quintanilla, R.: On the time polynomial decay in elastic solids with voids. J. Math. Anal. Appl. 338(2), 1296–1309 (2008). https://doi.org/10.1016/j.jmaa.2007.06.005

    MathSciNet  Article  MATH  Google Scholar 

  11. 11.

    Rivera, J.E.M., Naso, M.G.: About the stability to timoshenko system with one boundary dissipation. Appl. Math. Lett. 86, 111–118 (2018). https://doi.org/10.1016/j.aml.2018.06.023

    MathSciNet  Article  MATH  Google Scholar 

  12. 12.

    Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer, New York (1983). https://doi.org/10.1007/978-1-4612-5561-1

    Book  MATH  Google Scholar 

  13. 13.

    Liu, Z., Zheng, S.: Semigroups Associated with Dissipative Systems (Chapman & Hall/CRC Research Notes in Mathematics Series). Chapman and Hall/CRC, Boca Raton (1999)

    Google Scholar 

  14. 14.

    Prüss, J.: On the spectrum of \(C_0\)-semigroups. Trans. Am. Math. Soc. 284(2), 847–847 (1984). https://doi.org/10.1090/s0002-9947-1984-0743749-9

    Article  MATH  Google Scholar 

  15. 15.

    Arendt, W., Batty, C.J.K.: Tauberian theorems and stability of one-parameter semigroups. Trans. Am. Math. Soc. 306(2), 837–837 (1988). https://doi.org/10.1090/s0002-9947-1988-0933321-3

    MathSciNet  Article  MATH  Google Scholar 

  16. 16.

    Bassam, M., Mercier, D., Nicaise, S., Wehbe, A.: Polynomial stability of the timoshenko system by one boundary damping. J. Math. Anal. Appl. 425(2), 1177–1203 (2015). https://doi.org/10.1016/j.jmaa.2014.12.055

    MathSciNet  Article  MATH  Google Scholar 

Download references


The authors are grateful to the anonymous referee for its constructive remarks which have enhanced the presentation of this paper. Moreover, we are grateful to the professors Edson de Andrade Araújo and Pedro Tupã Pandava Aum of the Faculty of Petroleum Engineering of the Federal University of Pará for necessary support to make real the present present work. We also say many thanks to PROPESP/UFPA.


D.S. Almeida Júnior thanks the CNPq for financial support through the following projects:

\(\bullet \)“New guidelines for dissipative Timoshenko type systems at light of the second spectrum” - CNPq Grant 310423/2016-3 and “Stabilization for Timoshenko systems from the second spectrum point of view” - PNPD /CAPES/INCTMAT/LNCC 88887.351763/2019-00.

Author information



Corresponding author

Correspondence to A. J. A. Ramos.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ramos, A.J.A., Júnior, D.S.A., Freitas, M.M. et al. Exponential stabilization for porous elastic system with one boundary dissipation. Ann Univ Ferrara 66, 113–134 (2020). https://doi.org/10.1007/s11565-019-00334-1

Download citation


  • Porous-elasticity
  • Boundary feedback
  • Asymptotic behavior

Mathematics Subject Classification

  • 35B35
  • 35Q74
  • 74H40
  • 74K10
  • 93D15