Skip to main content
Log in

A new general decay result for abstract evolution equation with time-dependent nonlinear dissipation

  • Published:
ANNALI DELL'UNIVERSITA' DI FERRARA Aims and scope Submit manuscript

Abstract

The following abstract problem:

$$\begin{aligned} u_{tt}(t)+A u(t)-\int _{0}^{t}g(t-s)A u(s)ds+\eta (t)h(u_t)=\nabla F (u(t)) \end{aligned}$$

of second order evolution equation with time-dependent dissipation is considered. We prove, under a very general and wide class of kernel, a decay result. We establish optimal explicit and general decay rate results, using the multiplier method and some properties of the convex functions. Our result improves and generalizes many other results in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dafermos, C.M.: An abstract volterra equation with applications to linear viscoelasticity. J. Differ. Equ. 7(3), 554–569 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  2. Dafermos, C.M.: Asymptotic stability in viscoelasticity. Arch. Ration. Mech. Anal. 37(4), 297–308 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  3. Giorgi, C., Rivera, J.E.M., Pata, V.: Global attractors for a semilinear hyperbolic equation in viscoelasticity. J. Math. Anal. Appl. 260(1), 83–99 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  4. Conti, M., Pata, V.: Weakly dissipative semilinear equations of viscoelasticity. Commun. Pure Appl. Anal. 4(4), 705 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  5. Appleby, J.A., Fabrizio, M., Lazzari, B., Reynolds, D.W.: On exponential asymptotic stability in linear viscoelasticity. Math. Models Methods Appl. Sci. 16(10), 1677–1694 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  6. Pata, V.: Stability and exponential stability in linear viscoelasticity. Milan J. Math. 77(1), 333 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. Guesmia, A.: Asymptotic stability of abstract dissipative systems with infinite memory. J. Math. Anal. Appl. 382(2), 748–760 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  8. Guesmia, A.: Asymptotic behavior for coupled abstract evolution equations with one infinite memory. Appl. Anal. 94(1), 184–217 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  9. Conti, M., Marchini, E.M., Pata, V.: Global attractors for nonlinear viscoelastic equations with memory. arXiv preprint arXiv:1309.4595 (2013)

  10. Conti, M., Marchini, E.M., Pata, V.: A well posedness result for nonlinear viscoelastic equations with memory. Nonlinear Anal. Theory Methods Appl. 94, 206–216 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  11. Alabau-Boussouira, F., Cannarsa, P., Sforza, D.: Decay estimates for second order evolution equations with memory. J. Funct. Anal. 254(5), 1342–1372 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  12. Han, X., Wang, M.: General decay estimate of energy for the second order evolution equations with memory. Acta Appl. Math. 110(1), 195–207 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  13. Mustafa, M.I.: Asymptotic stability for the second order evolution equation with memory. J. Dyn. Control Syst. 25(2), 1–11 (2018)

    MathSciNet  Google Scholar 

  14. Wu, S.-T.: Energy decay rates via convexity for some second-order evolution equation with memory and nonlinear time-dependent dissipation. Nonlinear Anal. Theory Methods Appl. 74(2), 532–543 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  15. Jin, K.-P., Liang, J., Xiao, T.-J.: Coupled second order evolution equations with fading memory: Optimal energy decay rate. J. Differ. Equ. 257(5), 1501–1528 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  16. Apalara, T.A.: General decay of solutions in one-dimensional porous-elastic system with memory. J. Math. Anal. Appl. 469(2), 457–471 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  17. Liu, W., Wang, D., Chen, D.: General decay of solution for a transmission problem in infinite memory-type thermoelasticity with second sound. J. Therm. Stresses 41(6), 758–775 (2018)

    Article  Google Scholar 

  18. Belhannache, F., Algharabli, M.M., Messaoudi, S.A.: Asymptotic stability for a viscoelastic equation with nonlinear damping and very general type of relaxation functions. J. Dyn. Control Syst. (2019). https://doi.org/10.1007/s10883-019-9429-z

    Article  Google Scholar 

  19. Chen, Z., Liu, W., Chen, D., et al.: General decay rates for a laminated beam with memory. Taiwan. J. Math. (2019). https://doi.org/10.11650/tjm/181109

    Article  MathSciNet  MATH  Google Scholar 

  20. Liu, W., Chen, K., Yu, J.: Asymptotic stability for a non-autonomous full von Kármán beam with thermo-viscoelastic damping. Appl. Anal. 97(3), 400–414 (2018)

    Article  MathSciNet  Google Scholar 

  21. Liu, W., Zhao, W.: Stabilization of a thermoelastic laminated beam with past history. Appl. Math. Optim. (2017). https://doi.org/10.1007/s00245-017-9460-y

    Article  MATH  Google Scholar 

  22. Wang, D., Li, G., Zhu, B.: Well-posedness and general decay of solution for a transmission problem with viscoelastic term and delay. J. Nonlinear Sci. Appl. 9(3), 1202–1215 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  23. Feng, B.: On the decay rates for a one-dimensional porous elasticity system with past history. Commun. Pure Appl. Anal. 18(6), 2905–2921 (2019)

    Article  MathSciNet  Google Scholar 

  24. Messaoudi, S.A.: General decay of the solution energy in a viscoelastic equation with a nonlinear source. Nonlinear Anal. Theory Methods Appl. 69(8), 2589–2598 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  25. Messaoudi, S.A.: General decay of solutions of a viscoelastic equation. J. Math. Anal. Appl. 341(2), 1457–1467 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  26. Han, X., Wang, M.: General decay of energy for a viscoelastic equation with nonlinear damping. Math. Methods Appl. Sci. 32(3), 346–358 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  27. Liu, W.: General decay of solutions to a viscoelastic wave equation with nonlinear localized damping. Ann. Acad. Sci. Fenn. Math. 34, 291–302 (2009)

    MathSciNet  MATH  Google Scholar 

  28. Liu, W.: General decay rate estimate for a viscoelastic equation with weakly nonlinear time-dependent dissipation and source terms. J. Math. Phys. 50(11), 113506 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  29. Messaoudi, S.A., Mustafa, M.I.: On the control of solutions of viscoelastic equations with boundary feedback. Nonlinear Anal. Real World Appl. 10(5), 3132–3140 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  30. Mustafa, M.I.: Uniform decay rates for viscoelastic dissipative systems. J. Dyn. Control Syst. 22(1), 101–116 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  31. Mustafa, M.I.: Well posedness and asymptotic behavior of a coupled system of nonlinear viscoelastic equations. Nonlinear Anal. Real World Appl. 13(1), 452–463 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  32. Park, J.Y., Park, S.H.: General decay for quasilinear viscoelastic equations with nonlinear weak damping. J. Math. Phys. 50(8), 083505 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  33. Wu, S.-T.: General decay for a wave equation of kirchhoff type with a boundary control of memory type. Bound. Value Probl. 2011(1), 55 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  34. Messaoudi, S.A., Al-Khulaifi, W.: General and optimal decay for a quasilinear viscoelastic equation. Appl. Math. Lett. 66, 16–22 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  35. Lasiecka, I., Messaoudi, S.A., Mustafa, M.I.: Note on intrinsic decay rates for abstract wave equations with memory. J. Math. Phys. 54(3), 031504 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  36. Lasiecka, I., Tataru, D., et al.: Uniform boundary stabilization of semilinear wave equations with nonlinear boundary damping. Differ. Integral Equ. 6(3), 507–533 (1993)

    MathSciNet  MATH  Google Scholar 

  37. Mustafa, M.I.: Optimal decay rates for the viscoelastic wave equation. Math. Methods Appl. Sci. 41(1), 192–204 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  38. Komornik, V.: Exact Controllability and Stabilization: The Multiplier Method, vol. 36. Masson, New York (1994)

    MATH  Google Scholar 

  39. Arnol’d, V.I.: Mathematical Methods of Classical Mechanics, vol. 60. Springer, New York (2013)

    Google Scholar 

Download references

Acknowledgements

The authors thank KFUPM for its continuous support. This work is funded by KFUPM under Project Number SB181039.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Kafini.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Mahdi, A.M., Al-Gharabli, M.M. & Kafini, M. A new general decay result for abstract evolution equation with time-dependent nonlinear dissipation. Ann Univ Ferrara 65, 201–230 (2019). https://doi.org/10.1007/s11565-019-00325-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11565-019-00325-2

Keywords

Mathematics Subject Classification

Navigation