Skip to main content
Log in

A note on regularity of the pressure in the Navier–Stokes system

  • Published:
ANNALI DELL'UNIVERSITA' DI FERRARA Aims and scope Submit manuscript

Abstract

In this note we improve the standard regularity of the dynamic part of the pressure in the Navier–Stokes system. Using the theory of elliptic equations with \(L^1\) right-hand side we prove that, in addition to be in \(L^2\), the dynamic pressure belongs to \(W^{1,\alpha }_{loc} \) with \(1<\alpha <\frac{n}{n-1}\), in case of Dirichlet boundary condition. For pressure boundary condition the dynamic pressure is proved to be in \(W^{1,\alpha } \). As a consequence, for the force \(\mathbf{f} \in L^q (\Omega )^n \) and \(q>n /2 \) the pressure turns out to be continuous.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Bègue C., Conca C., Murat F., Pironneau O.: Les équations de Stokes et de Navier–Stokes avec des conditions aux limites sur la pression, in Nonlinear Partial Differential Equations and Their Applications, Collège de France seminar, Vol. IX, Pitman Res. Notes Math. Ser. , Longman Sci. Tech. pp. 179–264 (1988)

  2. Boccardo, L., Gallouët, T.: Non-linear elliptic and parabolic equations involving measure data. J. Funct. Anal. 87, 241–273 (1989)

    Article  Google Scholar 

  3. Conca, C., Murat, F., Pironneau, O.: The Stokes and Navier–Stokes equations with boundary conditions involving the pressure. Jpn. J. Math. 20, 279–318 (1994)

    Article  MathSciNet  Google Scholar 

  4. Dal Maso, G., Murat, F., Orsina, L., Prignet, A.: Definition and existence of renormalized solutions of elliptic equations with general measure data. C. R. Acad. Sci. Paris Série I 325, 481–486 (1997)

    Article  MathSciNet  Google Scholar 

  5. Galdi, G.P.: An Introduction to the Mathematical Theory of the Navier–Stokes Equations, I. Springer, Berlin (1994)

    MATH  Google Scholar 

  6. Gipouloux O., Marušić-Paloka E.: Asymptotic behaviour of the incompressible newtonian flow through thin constricted fracture. In: Proceedings of the conference multiscale problems in science and technology, Dubrovnik, Springer (2000)

  7. Heywood, J.G., Rannacher, R., Turek, S.: Artificial boundaries and flux and pressure conditions for the incompressible Navier–Stokes equations. Int. J. Numer. Methods Fluids 22, 325–352 (1996)

    Article  MathSciNet  Google Scholar 

  8. Lions, J.L., Magenes, E.: Problèmes aux limites non homogènes et applications, vol. 1. Dunod, Paris (1968)

    MATH  Google Scholar 

  9. Marušić, S.: On the Navier–Stokes system with pressure boundary condition. Ann. Univ. Ferrara 53, 319–331 (2007)

    Article  MathSciNet  Google Scholar 

  10. Marušić-Paloka, E.: Rigorous justification of the Kirchhoff law for junction of thin pipes filled with viscous fluid. Asymptot. Anal. 33(1), 51–66 (2003)

    MathSciNet  MATH  Google Scholar 

  11. Temam, R.: Navier–Stokes Equations. Theory and Numerical Analysis. American Mathematical Society, Amsterdam (1984)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanja Friganović.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Friganović, S. A note on regularity of the pressure in the Navier–Stokes system. Ann Univ Ferrara 64, 361–370 (2018). https://doi.org/10.1007/s11565-018-0302-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11565-018-0302-x

Keywords

Mathematics Subject Classification

Navigation