Microscopic modeling and analysis of collective decision making: equality bias leads suboptimal solutions

Abstract

We discuss a novel microscopic model for collective decision-making interacting multi-agent systems. In particular we are interested in modeling a well known phenomena in the experimental literature called equality bias, where agents tend to behave in the same way as if they were as good, or as bad, as their partner. We analyze the introduced problem and we prove the suboptimality of the collective decision-making in the presence of equality bias. Numerical experiments are addressed in the last section.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. 1.

    Albi, G., Pareschi, L.: Modeling of self-organized systems interacting with a few individuals: from microscopic to macroscopic dynamics. Appl. Math. Lett. 26(4), 397–401 (2013)

    MathSciNet  Article  MATH  Google Scholar 

  2. 2.

    Albi, G., Herty, M., Pareschi, L.: Kinetic description of optimal control problems and applications to opinion consensus. Commun. Math. Sci. 13(6), 1407–1429 (2015)

    MathSciNet  Article  MATH  Google Scholar 

  3. 3.

    Albi, G., Pareschi, L., Toscani, G., Zanella, M.: Recent advances in opinion modeling: control and social influence. In: Bellomo, N., Degond, P., Tadmor, E. (eds.) Active Particles Volume 1, Theory, Methods, and Applications. Birkhäuser-Springer, Berlin (2017)

    Google Scholar 

  4. 4.

    Albi, G., Pareschi, L., Zanella, M.: Boltzmann-type control of opinion consensus through leaders. Philos. Trans. R. Soc. Lond. A: Math. Phys. Eng. Sci. 372(2028), 20140138 (2014)

    MathSciNet  Article  MATH  Google Scholar 

  5. 5.

    Albi, G., Pareschi, L., Zanella, M.: Uncertainty quantification in control problems for flocking models. Math. Probl. Eng. 2015, 14 (2015)

    MathSciNet  Article  Google Scholar 

  6. 6.

    Albi, G., Pareschi, L., Zanella, M.: Opinion dynamics over complex networks: kinetic modelling and numerical methods. Kinet Relat Models 10(1), 1–32 (2017)

  7. 7.

    Bahrami, B., Olsen, K., Latham, P.E., Roepstorff, A., Rees, G., Frith, C.D.: Optimally interacting minds. Science 329(5995), 1081–1085 (2010)

    Article  Google Scholar 

  8. 8.

    Brugna, C., Toscani, G.: Kinetic models of opinion formation in the presence of personal conviction. Phys. Rev. E 92(5), 052818 (2015)

    Article  Google Scholar 

  9. 9.

    Cañizo, J.A., Carrillo, J.A., Rosado, J.: A well-posedness theory in measures for some kinetic models of collective behavior. Math. Models Methods Appl. Sci. 21(3), 515–539 (2011)

    MathSciNet  Article  MATH  Google Scholar 

  10. 10.

    Carrillo, J.A., Fornasier, M., Rosado, J., Toscani, G.: Asymptotic flocking dynamics for the kinetic Cucker–Smale model. SIAM J. Math. Anal. 42(1), 218–236 (2010)

    MathSciNet  Article  MATH  Google Scholar 

  11. 11.

    Carrillo, J.A., Fornasier, M., Toscani, G., Vecil, F.: Particle, kinetic and hydrodynamic models of swarming. In: Naldi, G., Pareschi, L., Toscani, G. (eds.) Mathematical Modeling of Collective Behavior in Socio-Economic and Life Sciences, pp. 297–336. Birkháuser, Boston (2010)

    Google Scholar 

  12. 12.

    Castellano, C., Fortunato, S., Loreto, V.: Statistical physics of social dynamics. Rev. Mod. Phys. 81(2), 591 (2009)

    Article  Google Scholar 

  13. 13.

    Chakraborti, A., Chakrabarti, B.K.: Statistical mechanics of money: how saving propensity affects its distribution. Eur. Phys. J. B-Condens. Matter Complex Syst. 17(1), 167–170 (2000)

    Article  Google Scholar 

  14. 14.

    Cristiani, E., Piccoli, B., Tosin, A.: Multiscale Modeling of Pedestrian Dynamics, MS&A: Modeling, Simulation and Applications, vol. 12. Springer, Berlin (2014)

    Google Scholar 

  15. 15.

    Cucker, F., Smale, S.: Emergent behavior in flocks. IEEE Trans. Autom. Control 52(5), 852–862 (2007)

    MathSciNet  Article  MATH  Google Scholar 

  16. 16.

    D’Orsogna, M.R., Chuang, Y.L., Bertozzi, A.L., Chayes, L.S.: Self-propelled particles with soft-core interactions: patterns, stability and collapse. Phys. Rev. Lett. 96(10), 104–302 (2006)

    Google Scholar 

  17. 17.

    Düring, B., Markowich, P., Pietschmann, J.F., Wolfram, M.-T.: Boltzmann and Fokker–Planck equations modelling opinion formation in the presence of strong leaders. Proc. R. Soc. Lond. A: Math. Phys. Eng. Sci. 465(2112), 3687–3708 (2009)

    MathSciNet  Article  MATH  Google Scholar 

  18. 18.

    Galam, S.: Rational group decision making: a random field Ising model at T=0. Phys. A. Stat. Mech. Appl. 238((1–4)), 66–80 (1997)

    Article  Google Scholar 

  19. 19.

    Galam, S., Zucker, J.-D.: From individual choice to group decision-making. Phys. A. Stat. Mech. Appl. 287, 644–659 (2000)

    MathSciNet  Article  Google Scholar 

  20. 20.

    Galton, F.: One vote, one value. Nature 75, 414–414 (1907)

    Article  MATH  Google Scholar 

  21. 21.

    Harvey, N., Fischer, I.: Taking advice: accepting help, improving judgment, and sharing responsibility. Organ. Behav. Hum. Decis. Process. 70(2), 117–133 (1997)

    Article  Google Scholar 

  22. 22.

    Herty, M., Zanella, M.: Performance bounds for the mean-field limit of constrained dynamics. Discrete Contin. Dyn. Syst. A 37(4), 2023–2043 (2017)

    MathSciNet  Article  MATH  Google Scholar 

  23. 23.

    Kruger, J., Dunning, D.: Unskilled and unaware of it: how difficulties in recognizing one’s incompetence lead to inflated self-assessments. J. Pers. Soc. Psychol. 77(6), 1121–1134 (1999)

    Article  Google Scholar 

  24. 24.

    Mahmoodi, A., Bang, D., Olsen, K., Zhao, Y.A., Shi, Z., Broberg, K., Safavi, S., Han, S., Ahmadabadi, M.N., Frith, C.D., Roepstorff, A., Rees, G., Bahrami, B.: Equality bias impairs collective decision-making across cultures. Proc. Natl. Acad. Sci. 112(12), 3835–3840 (2015)

    Google Scholar 

  25. 25.

    Motsch, S., Tadmor, E.: Heterophilious dynamics enhances consensus. SIAM Rev. 56(4), 577–621 (2014)

    MathSciNet  Article  MATH  Google Scholar 

  26. 26.

    Motsch, S., Tadmor, E.: A new model for self-organized dynamics and its flocking behavior. J. Stat. Phys. 144(5), 923–947 (2011)

    MathSciNet  Article  MATH  Google Scholar 

  27. 27.

    Pareschi, L., Toscani, G.: Wealth distribution and collective knowledge: a Boltzmann approach. Philos. Trans. R. Soc. A: Math. Phys. Eng. Sci. 372(2028), 20130396 (2014)

    MathSciNet  Article  MATH  Google Scholar 

  28. 28.

    Pareschi, L., Toscani, G.: Interacting Multiagent Systems: Kinetic Equations and Monte Carlo Methods. Oxford University Press, Oxford (2013)

    Google Scholar 

  29. 29.

    Pareschi, L., Vellucci, P., Zanella, M.: Kinetic models of collective decision-making in the presence of equality bias. Phys. A. Stat. Mech. Appl. 467, 201–217 (2017)

    MathSciNet  Article  Google Scholar 

  30. 30.

    Shen, J.: Cucker–Smale flocking under hierarchical leadership. SIAM J. Appl. Math. 68(3), 694–719 (2007)

    MathSciNet  Article  MATH  Google Scholar 

  31. 31.

    Toscani, G.: Kinetic models of opinion formation. Commun. Math. Sci. 4(3), 481–496 (2006)

    MathSciNet  Article  MATH  Google Scholar 

Download references

Acknowledgements

PV would like to acknowledge Dr. Luigi Teodonio for his stimulating discussions about the topic of the paper. MZ acknowledges the ”Compagnia di San Paolo”.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Pierluigi Vellucci.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Vellucci, P., Zanella, M. Microscopic modeling and analysis of collective decision making: equality bias leads suboptimal solutions. Ann Univ Ferrara 64, 185–207 (2018). https://doi.org/10.1007/s11565-017-0280-4

Download citation

Keywords

  • Decision dynamics
  • Opinion formation
  • Collective behavior
  • Multi-agent systems

Mathematics Subject Classification

  • 91B74
  • 70K75
  • 93B60