Advertisement

ANNALI DELL'UNIVERSITA' DI FERRARA

, Volume 64, Issue 1, pp 185–207 | Cite as

Microscopic modeling and analysis of collective decision making: equality bias leads suboptimal solutions

  • Pierluigi Vellucci
  • Mattia Zanella
Article

Abstract

We discuss a novel microscopic model for collective decision-making interacting multi-agent systems. In particular we are interested in modeling a well known phenomena in the experimental literature called equality bias, where agents tend to behave in the same way as if they were as good, or as bad, as their partner. We analyze the introduced problem and we prove the suboptimality of the collective decision-making in the presence of equality bias. Numerical experiments are addressed in the last section.

Keywords

Decision dynamics Opinion formation Collective behavior Multi-agent systems 

Mathematics Subject Classification

91B74 70K75 93B60 

Notes

Acknowledgements

PV would like to acknowledge Dr. Luigi Teodonio for his stimulating discussions about the topic of the paper. MZ acknowledges the ”Compagnia di San Paolo”.

References

  1. 1.
    Albi, G., Pareschi, L.: Modeling of self-organized systems interacting with a few individuals: from microscopic to macroscopic dynamics. Appl. Math. Lett. 26(4), 397–401 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Albi, G., Herty, M., Pareschi, L.: Kinetic description of optimal control problems and applications to opinion consensus. Commun. Math. Sci. 13(6), 1407–1429 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Albi, G., Pareschi, L., Toscani, G., Zanella, M.: Recent advances in opinion modeling: control and social influence. In: Bellomo, N., Degond, P., Tadmor, E. (eds.) Active Particles Volume 1, Theory, Methods, and Applications. Birkhäuser-Springer, Berlin (2017)Google Scholar
  4. 4.
    Albi, G., Pareschi, L., Zanella, M.: Boltzmann-type control of opinion consensus through leaders. Philos. Trans. R. Soc. Lond. A: Math. Phys. Eng. Sci. 372(2028), 20140138 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Albi, G., Pareschi, L., Zanella, M.: Uncertainty quantification in control problems for flocking models. Math. Probl. Eng. 2015, 14 (2015)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Albi, G., Pareschi, L., Zanella, M.: Opinion dynamics over complex networks: kinetic modelling and numerical methods. Kinet Relat Models 10(1), 1–32 (2017)Google Scholar
  7. 7.
    Bahrami, B., Olsen, K., Latham, P.E., Roepstorff, A., Rees, G., Frith, C.D.: Optimally interacting minds. Science 329(5995), 1081–1085 (2010)CrossRefGoogle Scholar
  8. 8.
    Brugna, C., Toscani, G.: Kinetic models of opinion formation in the presence of personal conviction. Phys. Rev. E 92(5), 052818 (2015)CrossRefGoogle Scholar
  9. 9.
    Cañizo, J.A., Carrillo, J.A., Rosado, J.: A well-posedness theory in measures for some kinetic models of collective behavior. Math. Models Methods Appl. Sci. 21(3), 515–539 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Carrillo, J.A., Fornasier, M., Rosado, J., Toscani, G.: Asymptotic flocking dynamics for the kinetic Cucker–Smale model. SIAM J. Math. Anal. 42(1), 218–236 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Carrillo, J.A., Fornasier, M., Toscani, G., Vecil, F.: Particle, kinetic and hydrodynamic models of swarming. In: Naldi, G., Pareschi, L., Toscani, G. (eds.) Mathematical Modeling of Collective Behavior in Socio-Economic and Life Sciences, pp. 297–336. Birkháuser, Boston (2010)CrossRefGoogle Scholar
  12. 12.
    Castellano, C., Fortunato, S., Loreto, V.: Statistical physics of social dynamics. Rev. Mod. Phys. 81(2), 591 (2009)CrossRefGoogle Scholar
  13. 13.
    Chakraborti, A., Chakrabarti, B.K.: Statistical mechanics of money: how saving propensity affects its distribution. Eur. Phys. J. B-Condens. Matter Complex Syst. 17(1), 167–170 (2000)CrossRefGoogle Scholar
  14. 14.
    Cristiani, E., Piccoli, B., Tosin, A.: Multiscale Modeling of Pedestrian Dynamics, MS&A: Modeling, Simulation and Applications, vol. 12. Springer, Berlin (2014)zbMATHGoogle Scholar
  15. 15.
    Cucker, F., Smale, S.: Emergent behavior in flocks. IEEE Trans. Autom. Control 52(5), 852–862 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    D’Orsogna, M.R., Chuang, Y.L., Bertozzi, A.L., Chayes, L.S.: Self-propelled particles with soft-core interactions: patterns, stability and collapse. Phys. Rev. Lett. 96(10), 104–302 (2006)Google Scholar
  17. 17.
    Düring, B., Markowich, P., Pietschmann, J.F., Wolfram, M.-T.: Boltzmann and Fokker–Planck equations modelling opinion formation in the presence of strong leaders. Proc. R. Soc. Lond. A: Math. Phys. Eng. Sci. 465(2112), 3687–3708 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Galam, S.: Rational group decision making: a random field Ising model at T=0. Phys. A. Stat. Mech. Appl. 238((1–4)), 66–80 (1997)CrossRefGoogle Scholar
  19. 19.
    Galam, S., Zucker, J.-D.: From individual choice to group decision-making. Phys. A. Stat. Mech. Appl. 287, 644–659 (2000)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Galton, F.: One vote, one value. Nature 75, 414–414 (1907)CrossRefzbMATHGoogle Scholar
  21. 21.
    Harvey, N., Fischer, I.: Taking advice: accepting help, improving judgment, and sharing responsibility. Organ. Behav. Hum. Decis. Process. 70(2), 117–133 (1997)CrossRefGoogle Scholar
  22. 22.
    Herty, M., Zanella, M.: Performance bounds for the mean-field limit of constrained dynamics. Discrete Contin. Dyn. Syst. A 37(4), 2023–2043 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Kruger, J., Dunning, D.: Unskilled and unaware of it: how difficulties in recognizing one’s incompetence lead to inflated self-assessments. J. Pers. Soc. Psychol. 77(6), 1121–1134 (1999)CrossRefGoogle Scholar
  24. 24.
    Mahmoodi, A., Bang, D., Olsen, K., Zhao, Y.A., Shi, Z., Broberg, K., Safavi, S., Han, S., Ahmadabadi, M.N., Frith, C.D., Roepstorff, A., Rees, G., Bahrami, B.: Equality bias impairs collective decision-making across cultures. Proc. Natl. Acad. Sci. 112(12), 3835–3840 (2015)Google Scholar
  25. 25.
    Motsch, S., Tadmor, E.: Heterophilious dynamics enhances consensus. SIAM Rev. 56(4), 577–621 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Motsch, S., Tadmor, E.: A new model for self-organized dynamics and its flocking behavior. J. Stat. Phys. 144(5), 923–947 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Pareschi, L., Toscani, G.: Wealth distribution and collective knowledge: a Boltzmann approach. Philos. Trans. R. Soc. A: Math. Phys. Eng. Sci. 372(2028), 20130396 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Pareschi, L., Toscani, G.: Interacting Multiagent Systems: Kinetic Equations and Monte Carlo Methods. Oxford University Press, Oxford (2013)zbMATHGoogle Scholar
  29. 29.
    Pareschi, L., Vellucci, P., Zanella, M.: Kinetic models of collective decision-making in the presence of equality bias. Phys. A. Stat. Mech. Appl. 467, 201–217 (2017)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Shen, J.: Cucker–Smale flocking under hierarchical leadership. SIAM J. Appl. Math. 68(3), 694–719 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Toscani, G.: Kinetic models of opinion formation. Commun. Math. Sci. 4(3), 481–496 (2006)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Università degli Studi di Ferrara 2017

Authors and Affiliations

  1. 1.Department of EconomicsRoma Tre UniversityRomeItaly
  2. 2.Department of Mathematical SciencesPolitecnico di TorinoTurinItaly

Personalised recommendations