Advertisement

ANNALI DELL'UNIVERSITA' DI FERRARA

, Volume 63, Issue 2, pp 365–376 | Cite as

On the growth and approximation of entire functions represented by Laplace–Stieltjes’ transformation

  • Chhaya Singhal
  • G. S. Srivastava
Article

Abstract

In the present paper, we obtain the characterization of various growth parameters of an entire function F(s) represented by Laplace–Stieltjes transformation in terms of the rate of decrease of \(E_n ( {F,\beta } ),\)where \(E_n ( {F,\beta } )\) represents the error in approximating the function F(s) by exponential polynomials.

Keywords

Entire function Laplace–Stieltjes transformation Maximum modulus Order Type 

Mathematics Subject Classification

30B50 30D10 

Notes

Acknowledgements

The authors are very much thankful to the referee for his valuable comments which helped in improving the paper.

References

  1. 1.
    Azpeitia, A.G.: On the Ritt-order of an entire Dirichlet series. Quart. J. Math. Oxford 2(15), 275–277 (1964)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Jiarong, Y.: Borel’s line of entire functions represented by Laplace–Stieltjes transformations. Acta Math. Sin. 13, 471–484 (1963)Google Scholar
  3. 3.
    Kamthan, P.K.: Proximate order (R) of entire functions represented by Dirichlet series. Collect. Math. 14(3), 275–278 (1962)MathSciNetMATHGoogle Scholar
  4. 4.
    Kong, Y.Y.: Laplace–Stieltjes transform of infinite order in the right half plane. Acta Math. Sin. 55(A)(1), 141–148 (2012)MathSciNetMATHGoogle Scholar
  5. 5.
    Kong, Y.Y., Sun, D.C.: On type-function and the growth of Laplace–Stieltjes transformations convergent in the right half plane. Adv. Math. 37(2), 197–205 (2007). (in Chinese)MathSciNetGoogle Scholar
  6. 6.
    Kong, Y.Y., Huo, Y.Y.: On generalized orders and types of Laplace–Stieltjes transforms analytic in the right half-plane. Acta Math. Sin. 59(a), 91–98 (2016)MathSciNetMATHGoogle Scholar
  7. 7.
    Kong, Y.Y., Yang, Y.: On the growth properties of the Laplace–Stieltjes transform. Complex Var. Elliptic Equ. 59(4), 553–563 (2014)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Nautiyal, A., Shukla, D.P.: On the approximation of an analytic function by exponential polynomials. Indian J. Pure Appl. Math. 14(6), 722–727 (1983)MathSciNetMATHGoogle Scholar
  9. 9.
    Rahman, Q.I.: On the lower order of entire functions defined by Dirichlet series. Quart. J. Math. 2(7), 96–99 (1956)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Singhal, C., Srivastava, G.S.: On the growth and approximation of an analytic function represented by Laplace–Stieltjes transformation. Anal. Theory Appl. 31(4), 407–420 (2015)MathSciNetMATHGoogle Scholar
  11. 11.
    Shang, L.N., Gao, Z.S.: The growth of entire functions of infinite order represented by Laplace–Stieltjes transformations. Acta Math. Sci. 27A(6), 1035–1043 (2007). (in Chinese)MathSciNetMATHGoogle Scholar
  12. 12.
    Sugimura, K.: Ubertragungeiniger Satzeaus der Theorie der ganzen Funktionen Dirichletsche Reihen. Math. Z. 29, 264–277 (1929)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Xi, L., Kong, Y.: On the order and type of Laplace–Stieltjes transforms of slow growth. Acta Math. Sci. 32A, 601–607 (2012). (in Chinese)MATHGoogle Scholar
  14. 14.
    Xu, H.Y., Xuan, Z.X.: The growth and value distribution of Laplace-Stieltjes transformations with infinite order in the right half plane. J. Inequal. Appl. 2013, 273 (2013)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Xu, H.Y., Xuan, Z.X.: The singular points of analytic functions with finite \(X\)-order defined by Laplace-Stieltjes transformations. J. Funct. Spaces 2015, 865059 (2015)MathSciNetGoogle Scholar
  16. 16.
    Xu, H.Y., Yi, C.F., Cao, T.B.: On proximate order and type functions of Laplace–Stieltjes transformations convergent in the right half-plane. Math. Commun. 17, 355–369 (2012)MathSciNetMATHGoogle Scholar

Copyright information

© Università degli Studi di Ferrara 2017

Authors and Affiliations

  1. 1.Department of MathematicsJaypee Institute of Information TechnologyNoidaIndia

Personalised recommendations