, Volume 63, Issue 2, pp 377–389 | Cite as

Some singular value and unitarily invariant norm inequalities for Hilbert space operators

  • A. Taghavi
  • V. DarvishEmail author
  • H. M. Nazari
  • S. S. Dragomir


In this paper, we prove some singular value inequalities for sum and product of operators. Also, we obtain several generalizations of recent inequalities. Moreover, as applications we establish some unitarily invariant norm and trace inequalities for operators which provide refinements of previous results.


Singular value inequality Unitarlily invariant norm Hermite-Hadamard inequality 

Mathematics Subject Classification

47A63 15A60 47B05 47B10 



This work was written whilst the second author was visiting Victoria University. He is grateful for the support and hospitality.


  1. 1.
    Bhatia, R.: Matrix Analysis, GTM 169. Springer, New York (1997)CrossRefGoogle Scholar
  2. 2.
    Zhan, X.: Matrix Inequalities. Springer, Berlin (2002)CrossRefzbMATHGoogle Scholar
  3. 3.
    Dragomir, S.S.: Hermite–Hadamard’s type inequalities for operator convex functions. Appl. Math. Comput. 218, 766–772 (2011)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Ghazanfari, A.G.: The Hermite–Hadamard type inequalities for operator s-convex functions. J. Adv. Res. Pure Math. 6(3), 52–61 (2014)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Uchiyama, M.: Commutativity of self-adjoint operators. Pac. J. Math. 161, 385–392 (1993)CrossRefzbMATHGoogle Scholar
  6. 6.
    Nagisa, M., Ueda, M., Wada, S.: Commutativity of operators. Nihonkai Math. J. 17, 1–8 (2006)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Bhatia, R., Kittaneh, F.: Notes on matrix arithmetic–geometric mean inequalities. Linear Algebra Appl. 308, 77–84 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Drury, S.W.: On a question of Bhatia and Kittaneh. Linear Algebra Appl. 437, 1955–1960 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Bhatia, R., Kittaneh, F.: On singular values of a product of operators. SIAM J. Matrix Anal. Appl. 11, 271–277 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Hirzallah, O., Kittaneh, F.: Inequalities for sums and direct sums of Hilbert space operators. Linear Algebra Appl. 424, 71–82 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Bhatia, R., Kittaneh, F.: Norm inequalities for positive operators. Lett. Math. Phys. 43, 225–231 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Ando, T., Zhan, X.: Norm inequalities related to operator monotone functions. Math. Ann. 315, 771–780 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Aujla, J.S., Silva, F.C.: Weak majorization inequalities and convex functions. Linear Algebra Appl. 369, 217–233 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Hiai, F., Zhan, X.: Inequalities involving unitarily invariant norms and operator monotone functions. Linear Algebra Appl. 341, 151–169 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Bhatia, R., Kittaneh, F.: The matrix arithmetic-geometric mean inequality revisited. Linear Algebra Appl. 428, 2177–2191 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Simon, B.: Trace Ideals and Their Applications. Cambridge University Press, Cambridge (1979)zbMATHGoogle Scholar
  17. 17.
    Shebrawi, Kh, Albadawi, H.: Trace inequalities for matrices. Bull. Aust. Math. Soc. 87, 139–148 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Horn, R.A., Johnson, C.R.: Matrix Analysis. Cambridge University Press, Cambridge (2012)CrossRefGoogle Scholar

Copyright information

© Università degli Studi di Ferrara 2017

Authors and Affiliations

  1. 1.Department of Mathematics, Faculty of Mathematical SciencesUniversity of MazandaranBabolsarIran
  2. 2.Mathematics, School of Engineering and ScienceVictoria UniversityMelbourne City MCAustralia

Personalised recommendations