Skip to main content
Log in

Tumorbasierte Induktion von Glomerulonephritiden

Tumor-based induction of glomerulonephritis

  • Leitthema
  • Published:
Der Nephrologe Aims and scope

Zusammenfassung

Glomerulonephritiden sind seltene immunvermittelte Nierenerkrankungen, die unbehandelt häufig zu einem Verlust der Nierenfunktion führen. Die Pathogenese der einzelnen Glomerulonephritisentitäten ist vielfältig, gleichzeitig bleiben die genauen immunologischen Mechanismen und Mediatoren zu großen Teilen ungeklärt. Vor über 50 Jahren wurde eine erhöhte Prävalenz von Tumoren bei Patienten mit Glomerulonephritiden beschrieben, sodass häufig von einer sekundären Form der Glomerulonephritis ausgegangen und bei Diagnose ein Tumorscreening empfohlen wird. Ob die Entstehung einer Glomerulonephritis auch kausal mit der Diagnose eines Tumors zusammenhängt, wird weiterhin kontrovers diskutiert, insbesondere im Hinblick darauf, dass Patienten mit Glomerulonephritis häufig älter sind und ein höheres Tumorrisiko aufweisen. Nicht nur die Tumorprävalenz und -inzidenz, sondern auch die assoziierten Tumorentitäten unterscheiden sich je nach Glomerulonephritisform erheblich. In diesem Zusammenhang nimmt die membranöse Glomerulonephritis eine Sonderstellung ein, nicht nur angesichts der hohen Tumorprävalenz bei diesen Patienten, sondern auch aufgrund der Fortschritte der letzten 10 Jahre bei der Aufklärung der Pathogenese dieser Erkrankung. Ein besseres Verständnis der Pathomechanismen der Entstehung einer Glomerulonephritis würde es ermöglichen, eine Tumorsuche an das individuelle Risiko des Patienten anzupassen, sodass Hochrisikopatienten identifiziert und unnötige Untersuchungen vermieden werden können.

Abstract

Glomerulonephritides represent rare immune-mediated renal diseases, which untreated often lead to renal failure and end-stage kidney disease. The pathogenesis of the various glomerulonephritis entities is diverse; however, the precise immunological mechanisms and mediators leading to these diseases remain largely unknown. A high prevalence of tumors in patients diagnosed with glomerulonephritis was described more than 50 years ago, leading to the assumption of a secondary form of glomerulonephritis and to the recommendation to screen patients diagnosed with glomerulonephritis for tumors. At the same time a causality link between the diagnosis of a tumor and the development of glomerulonephritis was never proven and remains controversial, especially considering the fact that patients with glomerulonephritis are often older and have a higher risk for a tumor. Not only the tumor incidence and prevalence but also the associated tumor entities differ considerably between the different glomerulonephritis forms as do the suggested pathomechanisms linking the two diseases. In this context, membranous nephropathy holds a special position, not only because of the high tumor prevalence in these patients but also due to the advances made in the last 10 years in understanding the pathogenesis of the disease. Elucidation of the pathomechanisms leading to the development of glomerulonephritis would enable the diagnostic screen for a tumor to be adapted to the individual risk of the patient so that high-risk patients can be identified and unnecessary diagnostic procedures can be avoided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3

Literatur

  1. Alousi MA, Post RS, Heymann W (1969) Experimental autoimmune nephrosis in rats. Morphogenesis of the glomerular lesion: immunohistochemical and electron microscopic studies. Am J Pathol 54(1):47–71

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Audard V, Larousserie F, Grimbert P (2006) Minimal change nephrotic syndrome and classical Hodgkin’s lymphoma: report of 21 cases and review of the literature. Kidney Int 69(12):2251–2260

    CAS  PubMed  Google Scholar 

  3. Bajel A, Yin Lin M, Hill PA, Goodman D, McCormack C, Foley P, Davison J, Hönemann D, Kenealy M, Lade S, Ryan G, Prince HM (2009) IgA nephropathy associated with cutaneous T cell lymphoma. Leuk Lymphoma 50(12):2083–2085

    PubMed  Google Scholar 

  4. Beck LH Jr (2010) Membranous nephropathy and malignancy. Semin Nephrol 30(6):635–644

    CAS  PubMed  Google Scholar 

  5. Beck LH Jr, Bonegio RG, Lambeau G et al (2009) M‑type phospholipase A2 receptor as target antigen in idiopathic membranous nephropathy. N Engl J Med 361(1):11–21

    CAS  PubMed  PubMed Central  Google Scholar 

  6. van den Berg JG, Weening JJ (2004) Role of the immune system in the pathogenesis of idiopathic nephrotic syndrome. Clin Sci 107(2):125–136

    Google Scholar 

  7. Bergmann J, Buchheidt D, Waldherr R et al (2005) IgA nephropathy and hodgkin’s disease: a rare coincidence. Case report and literature review. Am J Kidney Dis 45(1):e16–e19

    PubMed  Google Scholar 

  8. Bernatsky S, Ramsey-Goldman R, Joseph L et al (2014) Lymphoma risk in systemic lupus: effects of disease activity versus treatment. Ann Rheum Dis 73(1):138–142

    CAS  PubMed  Google Scholar 

  9. Bertelli R, Bonanni A, Di Donato A (2016) Regulatory T cells and minimal change nephropathy: in the midst of a complex network. Clin Exp Immunol 183(2):166–174

    CAS  PubMed  Google Scholar 

  10. Birkeland SA, Storm HH (2003) Glomerulonephritis and malignancy: a population-based analysis. Kidney Int 63(2):716–721

    PubMed  Google Scholar 

  11. van den Brand JAJG, Ruggenenti P, Chianca A et al (2017) Safety of rituximab compared with steroids and cyclophosphamide for idiopathic membranous nephropathy. J Am Soc Nephrol 28(9):2729–2737

    PubMed  PubMed Central  Google Scholar 

  12. Bridoux F, Hugue V, Coldefy O et al (2002) Fibrillary glomerulonephritis and immunotactoid (microtubular) glomerulopathy are associated with distinct immunologic features. Kidney Int 62(5):1764–1775

    CAS  PubMed  Google Scholar 

  13. Brouet JC, Clauvel JP, Danon F, Klein M, Seligmann M (1974) Biologic and clinical significance of cryoglobulins. A report of 86 cases. Am J Med 57(5):775–788

    CAS  PubMed  Google Scholar 

  14. Burstein DM, Korbet SM, Schwartz MM (1993) Membranous glomerulonephritis and malignancy. Am J Kidney Dis 22(1):5–10

    CAS  PubMed  Google Scholar 

  15. Couser WG (2012) Basic and translational concepts of immune-mediated glomerular diseases. J Am Soc Nephrol 23(3):381–399

    CAS  PubMed  Google Scholar 

  16. Couser WG, Wagonfeld JB, Spargo BH et al (1974) Glomerular deposition of tumor antigen in membranous nephropathy associated with colonic carcinoma. Am J Med 57(6):962–970

    CAS  PubMed  Google Scholar 

  17. van Daalen EE, Rizzo R, Kronbichler A et al (2017) Effect of rituximab on malignancy risk in patients with ANCA-associated vasculitis. Ann Rheum Dis 76(6):1064–1069

    PubMed  Google Scholar 

  18. Da’as N, Polliack A, Cohen Y et al (2001) Kidney involvement and renal manifestations in non-Hodgkin’s lymphoma and lymphocytic leukemia: a retrospective study in 700 patients. Eur J Haematol 67(3):158–164

    PubMed  Google Scholar 

  19. Deutsche Stiftung Organtransplantation (2019) Indikationen für eine Nierentransplantation. https://www.dso.de/DSO-Infografiken/DOT_2018_05_96_Indikationen-NierenTX.jpg. Zugegriffen: 12. Nov. 2019

  20. Dixon FJ, Feldman JD, Vazquez JJ (1961) Experimental glomerulonephritis. The pathogenesis of a laboratory model resembling the spectrum of human glomerulonephritis. J Exp Med 113:899–920

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Edgington TS, Glassock RJ, Dixon FJ (1967) Autologous immune-complex pathogenesis of experimental allergic glomerulonephritis. Science 155(3768):1432–1434

    CAS  PubMed  Google Scholar 

  22. Eremina V, Jefferson JA, Kowalewska J et al (2008) VEGF inhibition and renal thrombotic microangiopathy. N Engl J Med 358(11):1129–1136

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Fadel F, El Karoui K, Knebelmann B (2009) Anti-CTLA4 antibody-induced lupus nephritis. N Engl J Med 361(2):211–212

    CAS  PubMed  Google Scholar 

  24. Faurschou M, Sorensen IJ, Mellemkjaer L et al (2008) Malignancies in Wegener’s granulomatosis: incidence and relation to cyclophosphamide therapy in a cohort of 293 patients. J Rheumatol 35(1):100–105

    CAS  PubMed  Google Scholar 

  25. Glassock RJ (2009) Human idiopathic membranous nephropathy—A mystery solved? N Engl J Med 361(1):81–83

    CAS  PubMed  Google Scholar 

  26. González García E, Olea T, Hevia C et al (2007) Focal segmental glomerulosclerosis due to a relapsing non-Hodgkin’s lymphoma diagnosed by positron emission tomography. J Nephrol 20(5):626–628

    PubMed  Google Scholar 

  27. von Haxthausen F, Reinhard L, Pinnschmidt HO et al (2018) Antigen-specific IgG subclasses in primary and malignancy-associated membranous nephropathy. Front Immunol 9:3035

    Google Scholar 

  28. Heaf JG, Hansen A, Laier GH (2018) Quantification of cancer risk in glomerulonephritis. BMC Nephrol 19(1):27

    PubMed  PubMed Central  Google Scholar 

  29. Hoxha E, Beck LH Jr, Wiech T et al (2017) An indirect immunofluorescence method facilitates detection of thrombospondin type 1 domain-containing 7A-specific antibodies in membranous nephropathy. J Am Soc Nephrol 28(2):520–531

    CAS  PubMed  Google Scholar 

  30. Hoxha E, Wiech T, Stahl PR et al (2016) A mechanism for cancer-associated membranous nephropathy. N Engl J Med 374(20):1995–1996

    PubMed  Google Scholar 

  31. Izzedine H, Mateus C, Boutros C et al (2017) Renal effects of immune checkpoint inhibitors. Nephrol Dial Transplant 32(6):936–942

    CAS  PubMed  Google Scholar 

  32. Karras A, de Montpreville V, Fakhouri F et al (2005) Renal and thymic pathology in thymoma-associated nephropathy: report of 21 cases and review of the literature. Nephrol Dial Transplant 20(6):1075–1082

    PubMed  Google Scholar 

  33. Koyama A, Fujisaki M, Kobayashi M et al (1991) A glomerular permeability factor produced by human T cell hybridomas. Kidney Int 40(3):453–460

    CAS  PubMed  Google Scholar 

  34. Lai KW, Wei CL, Tan LK (2007) Overexpression of interleukin-13 induces minimal-change-like nephropathy in rats. J Am Soc Nephrol 18(5):1476–1485

    CAS  PubMed  Google Scholar 

  35. Lee JC, Yamauchi H, Hopper J Jr (1966) The association of cancer and the nephrotic syndrome. Ann Intern Med 64(1):41–51

    CAS  PubMed  Google Scholar 

  36. Leeaphorn N, Kue-A-Pai P, Thamcharoen N et al (2014) Prevalence of cancer in membranous nephropathy: a systematic review and meta-analysis of observational studies. Am J Nephrol 40(1):29–35

    PubMed  Google Scholar 

  37. Lefaucheur C, Stengel B, Nochy D et al (2006) Membranous nephropathy and cancer: epidemiologic evidence and determinants of high-risk cancer association. Kidney Int 70(8):1510–1517

    CAS  PubMed  Google Scholar 

  38. Lin F, Zhang D, Chang J (2018) THSD7A-associated membranous nephropathy in a patient with neurofibromatosis type 1. Eur J Med Genet 61(2):84–88

    PubMed  Google Scholar 

  39. Lönnbro-Widgren J, Ebefors K, Mölne J et al (2015) Glomerular IgG subclasses in idiopathic and malignancy-associated membranous nephropathy. Clin Kidney J 8(4):433–439

    PubMed  PubMed Central  Google Scholar 

  40. Magyarlaki T, Kiss B, Buzogány I (1999) Renal cell carcinoma and paraneoplastic IgA nephropathy. Nephron 82(2):127–130

    CAS  PubMed  Google Scholar 

  41. Mallouk A, Pham PT, Pham PC (2006) Concurrent FSGS and Hodgkin’s lymphoma: case report and literature review on the link between nephrotic glomerulopathies and hematological malignancies. Clin Exp Nephrol 10(4):284–289

    PubMed  Google Scholar 

  42. Mamlouk O, Selamet U, Machado S et al (2019) Nephrotoxicity of immune checkpoint inhibitors beyond tubulointerstitial nephritis: single-center experience. J Immunother Cancer 7(1):2

    PubMed  PubMed Central  Google Scholar 

  43. Matsumoto A, Matsui I, Namba T et al (2019) VEGF‑A links angiolymphoid hyperplasia with eosinophilia (ALHE) to THSD7A membranous nephropathy: a report of 2 cases. Am J Kidney Dis 73(6):880–885

    CAS  PubMed  Google Scholar 

  44. McGrogan A, Franssen CF, de Vries CS (2011) The incidence of primary glomerulonephritis worldwide: a systematic review of the literature. Nephrol Dial Transplant 26(2):414–430

    PubMed  Google Scholar 

  45. Montague E, Hockenhull K, Lamarca A et al (2019) Duodenal neuroendocrine tumour associated with minimal change glomerulonephritis. BMJ Case Rep 12(8):e227987. https://doi.org/10.1136/bcr-2018-227987

    Article  PubMed  PubMed Central  Google Scholar 

  46. Moorthy AV, Zimmerman SW, Burkholder PM (1976) Nephrotic syndrome in Hodgkin’s disease. Evidence for pathogenesis alternative to immune complex deposition. Am J Med 61(4):471–477

    CAS  PubMed  Google Scholar 

  47. Mori T, Yabuhara A, Nakayama J et al (1995) Frequently relapsing minimal change nephrotic syndrome with natural killer cell deficiency prior to the overt relapse of Hodgkin’s disease. Pediatr Nephrol 9(5):619–620

    CAS  PubMed  Google Scholar 

  48. Murtas C, Ghiggeri GM (2016) Membranous glomerulonephritis: histological and serological features to differentiate cancer-related and non-related forms. J Nephrol 29(4):469–478

    CAS  PubMed  Google Scholar 

  49. Mustonen J, Pasternack A, Helin H (1984) IgA mesangial nephropathy in neoplastic diseases. Contrib Nephrol 40:283–291

    CAS  PubMed  Google Scholar 

  50. Ohtani H, Wakui H, Komatsuda A et al (2004) Distribution of glomerular IgG subclass deposits in malignancy-associated membranous nephropathy. Nephrol Dial Transplant 19(3):574–579

    CAS  PubMed  Google Scholar 

  51. Pankhurst T, Savage CO, Gordon C et al (2004) Malignancy is increased in ANCA-associated vasculitis. Rheumatology (Oxford) 43(12):1532–1535

    CAS  Google Scholar 

  52. Person F, Rinschen MM, Brix SR et al (2019) Bevacizumab-associated glomerular microangiopathy. Mod Pathol 32(5):684–700

    CAS  PubMed  Google Scholar 

  53. Pfister F, Amann K, Daniel C et al (2018) Characteristic morphological changes in anti-VEGF therapy-induced glomerular microangiopathy. Histopathology 73(6):990–1001

    PubMed  Google Scholar 

  54. Qin W, Beck LH Jr, Zeng C et al (2011) Anti-phospholipase A2 receptor antibody in membranous nephropathy. J Am Soc Nephrol 22(6):1137–1143

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Qu Z, Liu G, Li J (2012) Absence of glomerular IgG4 deposition in patients with membranous nephropathy may indicate malignancy. Nephrol Dial Transplant 27(5):1931–1937

    CAS  PubMed  Google Scholar 

  56. Rahmattulla C, Berden AE, Wakker SC et al (2015) Incidence of malignancies in patients with antineutrophil cytoplasmic antibody-associated vasculitis diagnosed between 1991 and 2013. Arthritis Rheumatol 67(12):3270–3278

    CAS  PubMed  Google Scholar 

  57. Ronco P, Plaisier E, Mougenot B et al (2006) Immunoglobulin light (heavy)-chain deposition disease: from molecular medicine to pathophysiology-driven therapy. Clin J Am Soc Nephrol 1(6):1342–1350

    CAS  PubMed  Google Scholar 

  58. Rosenstock JL, Markowitz GS, Valeri AM et al (2003) Fibrillary and immunotactoid glomerulonephritis: distinct entities with different clinical and pathologic features. Kidney Int 63(4):1450–1461

    PubMed  Google Scholar 

  59. Sethi S, Zand L, Leung N et al (2010) Membranoproliferative glomerulonephritis secondary to monoclonal gammopathy. Clin J Am Soc Nephrol 5(5):770–782

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Shalhoub RJ (1974) Pathogenesis of lipoid nephrosis: a disorder of T‑cell function. Lancet 2(7880):556–560

    CAS  PubMed  Google Scholar 

  61. Sriskandarajah S, Bostad L, Myklebust TÅ et al (2017) Cancer in ANCA-associated glomerulonephritis: a registry-based cohort study. Int J Nephrol. https://doi.org/10.1155/2017/6013038

    Article  PubMed  PubMed Central  Google Scholar 

  62. Stahl PR, Hoxha E, Wiech T et al (2017) THSD7A expression in human cancer. Genes Chromosomes Cancer 56(4):314–327

    CAS  PubMed  Google Scholar 

  63. Taguchi S, Koshikawa Y, Ohyama S et al (2019) Thrombospondin type‑1 domain-containing 7A-associated membranous nephropathy after resection of rectal cancer: a case report. BMC Nephrol 20(1):43

    PubMed  PubMed Central  Google Scholar 

  64. Takahashi N, Tsuji K, Tamiya H et al (2018) Goodpasture’s disease in a patient with advanced lung cancer treated with nivolumab: an autopsy case report. Lung Cancer 122:22–24

    PubMed  Google Scholar 

  65. Tatsis E, Reinhold-Keller E, Steindorf K et al (1999) Wegener’s granulomatosis associated with renal cell carcinoma. Arthritis Rheum 42(4):751–756

    CAS  PubMed  Google Scholar 

  66. Timmermans SA, Ayalon R, van Paassen P et al (2013) Anti-phospholipase A2 receptor antibodies and malignancy in membranous nephropathy. Am J Kidney Dis 62(6):1223–1225

    CAS  PubMed  Google Scholar 

  67. Tomas NM, Beck LH Jr, Meyer-Schwesinger C et al (2014) Thrombospondin type‑1 domain-containing 7A in idiopathic membranous nephropathy. N Engl J Med 371(24):2277–2287

    PubMed  PubMed Central  Google Scholar 

  68. Wang J, Cui Z, Lu J (2017) Circulating antibodies against thrombospondin type‑I domain-containing 7A in Chinese patients with idiopathic membranous nephropathy. Clin J Am Soc Nephrol 12(10):1642–1651

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Wang T, Zhang Y, Liu M et al (2019) THSD7A as a marker for paraneoplastic membranous nephropathy. Int Urol Nephrol 51(2):371–373

    PubMed  Google Scholar 

  70. Weinmann-Menke J, Holtz S, Sollinger D et al (2019) Treatment of membranous nephropathy in patients with THSD7A antibodies using immunoadsorption. Am J Kidney Dis 74(6):849–852

    Article  PubMed  Google Scholar 

  71. Xian L, Dong D, Luo J, Zhuo L et al (2019) Expression of THSD7A in neoplasm tissues and its relationship with proteinuria. BMC Nephrol 20(1):332

    PubMed  PubMed Central  Google Scholar 

  72. Zhang Z, Gong T, Rennke HG et al (2019) Duodenal schwannoma as a rare association with membranous nephropathy: a case report. Am J Kidney Dis 73(2):278–280

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Hoxha.

Ethics declarations

Interessenkonflikt

E. Hoxha und T. B. Huber geben an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Additional information

Redaktion

U. Heemann, München

U. Kunzendorf, Kiel

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hoxha, E., Huber, T.B. Tumorbasierte Induktion von Glomerulonephritiden. Nephrologe 15, 71–80 (2020). https://doi.org/10.1007/s11560-020-00404-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11560-020-00404-y

Schlüsselwörter

Keywords

Navigation