Nierenfunktion bei kontrastmittelverstärkter Bildgebung




Die potenziellen Nebenwirkungen kontrastmittelverstärkter Bildgebung stellen Nephrologen und Radiologen im klinischen Alltag immer wieder vor schwierige Entscheidungen.

Ziel der Arbeit

Bewertung der unmittelbar mit der Nierenfunktion in Zusammenhang stehenden Krankheitsbilder kontrastmittelinduziertes akutes Nierenversagen (KM-induziertes ANV) und nephrogene systemische Sklerose (NSF).

Material und Methoden

Literaturrecherche in PubMed und Medline über „Nierenfunktion“ und „Kontrastmittel“, ergänzt durch eigene Erfahrungen.


Für das KM-induzierte ANV erfolgt derzeit eine klinische Neubewertung, die NSF tritt unter bestimmten präventiven Maßnahmen und enger Indikationsstellung aktuell nicht mehr auf.


Nach aktueller Studienlage wurde das klinische Risiko eines KM-induzierten ANV lange Zeit überschätzt und sollte keinesfalls eine KM-Gabe verhindern, wenn es keine gleichwertigen diagnostischen Alternativen gibt. Die wirksamste Prophylaxe bleibt die Vermeidung überflüssiger KM-Gaben.


Kontrastmittelinduziertes akutes Nierenversagen Kontrastmittelinduzierte Nephropathie Nephrogene systemische Fibrose Computertomographie Magnetresonanztomographie 

Kidney function in contrast media-enhanced imaging



The potential adverse reactions to contrast media-enhanced imaging regularly offer challenges in decision-making for nephrologists and radiologists.


The clinical pictures of contrast media-induced acute kidney injury (CI-AKI) and nephrogenic systemic fibrosis (NSF) were evaluated, which are both caused by contrast media and closely linked to the kidney function.

Material and methods

The literature in PubMed and Medline was searched for the terms “kidney function” and “contrast media” and complemented by our own experiences.


While there is an ongoing re-evaluation of the clinical relevance of CI-AKI, no new cases of NSF have recently been reported under consideration of certain preventive interventions and very restricted use of gadolinium-based contrast agents.


Considering the results of the latest clinical research, the potential risk of CI-AKI has been overestimated for a long time and should no longer outweigh the diagnostic benefit of contrast media-enhanced imaging. Nevertheless, the most effective prophylaxis for CI-AKI is the avoidance of unnecessary administration of contrast media.


Contrast-induced acute kidney injury Contrast-induced nephropathy Nephrogrenic fibrosing dermopathy Computed tomography Magnetic resonance imaging 


Einhaltung ethischer Richtlinien


M. Jahn, S. Becker und A. Kribben geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.


  1. 1.
    Swick M (1974) Uroradiographic media. Urology 4(6):750–757CrossRefPubMedGoogle Scholar
  2. 2.
    Laniado M et al (1984) First use of GdDTPA/dimeglumine in man. Physiol Chem Phys Med Nmr 16(2):157–165PubMedGoogle Scholar
  3. 3.
    Quinby WC, Austen GJ (1939) Suppression of urine complicating pyelography. N Engl J Med 221(21):814–816CrossRefGoogle Scholar
  4. 4.
    McDonald JS et al (2013) Frequency of acute kidney injury following intravenous contrast medium administration: a systematic review and meta-analysis. Radiology 267(1):119–128CrossRefPubMedGoogle Scholar
  5. 5.
    Andreucci M et al (2017) Update on the renal toxicity of iodinated contrast drugs used in clinical medicine. Drug Healthc Patient Saf 9:25–37CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Eng J et al (2016) Comparative effect of contrast media type on the incidence of contrast-induced nephropathy: a systematic review and meta-analysis. Ann Intern Med 164(6):417–424CrossRefPubMedGoogle Scholar
  7. 7.
    Work Group (2012) KDIGO clinical practice guideline for acute kidney injury. Kidney Int Suppl 2:1–138CrossRefGoogle Scholar
  8. 8.
    Davenport MS, Cohan RH, Ellis JH (2015) Contrast media controversies in 2015: imaging patients with renal impairment or risk of contrast reaction. AJR Am J Roentgenol 204(6):1174–1181CrossRefPubMedGoogle Scholar
  9. 9.
    Stacul F et al (2011) Contrast induced nephropathy: updated ESUR Contrast Media Safety Committee guidelines. Eur Radiol 21(12):2527–2541CrossRefPubMedGoogle Scholar
  10. 10.
    Davenport MS et al (2013) Contrast material-induced nephrotoxicity and intravenous low-osmolality iodinated contrast material: risk stratification by using estimated glomerular filtration rate. Radiology 268(3):719–728CrossRefPubMedGoogle Scholar
  11. 11.
    Davenport MS et al (2013) Contrast material-induced nephrotoxicity and intravenous low-osmolality iodinated contrast material. Radiology 267(1):94–105CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    McDonald RJ et al (2013) Intravenous contrast material-induced nephropathy: causal or coincident phenomenon? Radiology 267(1):106–118CrossRefPubMedGoogle Scholar
  13. 13.
    Wilhelm-Leen E, Montez-Rath ME, Chertow G (2017) Estimating the risk of radiocontrast-associated nephropathy. J Am Soc Nephrol 28(2):653–659CrossRefPubMedGoogle Scholar
  14. 14.
    Ehrmann S et al (2017) Contrast-associated acute kidney injury in the critically ill: systematic review and Bayesian meta-analysis. Intensive Care Med 43(6):785–794CrossRefPubMedGoogle Scholar
  15. 15.
    Herts BR et al (2008) Identifying outpatients with renal insufficiency before contrast-enhanced CT by using estimated glomerular filtration rates versus serum creatinine levels. Radiology 248(1):106–113CrossRefPubMedGoogle Scholar
  16. 16.
    Galle J, Floege J (2017) Choosing wisely recommendations in nephrology. Internist (Berl) 58(6):568–574CrossRefGoogle Scholar
  17. 17.
    Feldkamp T et al (2018) Radial access protects from contrast media induced nephropathy after cardiac catheterization procedures. Clin Res Cardiol 107(2):148–157CrossRefPubMedGoogle Scholar
  18. 18.
    Nyman U et al (2012) Are intravenous injections of contrast media really less nephrotoxic than intra-arterial injections? Eur Radiol 22(6):1366–1371CrossRefPubMedGoogle Scholar
  19. 19.
    Chou SH et al (2011) Persistent renal enhancement after intra-arterial versus intravenous iodixanol administration. Eur J Radiol 80(2):378–386CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Karlsberg RP, Dohad SY, Sheng R (2011) Contrast medium-induced acute kidney injury: comparison of intravenous and intraarterial administration of iodinated contrast medium. J Vasc Interv Radiol 22(8):1159–1165CrossRefPubMedGoogle Scholar
  21. 21.
    Kooiman J et al (2013) Contrast-induced acute kidney injury and clinical outcomes after intra-arterial and intravenous contrast administration: risk comparison adjusted for patient characteristics by design. Am Heart J 165(5):793–799.e1CrossRefPubMedGoogle Scholar
  22. 22.
    Nakaura T et al (2012) Low contrast agent and radiation dose protocol for hepatic dynamic CT of thin adults at 256-detector row CT: effect of low tube voltage and hybrid iterative reconstruction algorithm on image quality. Radiology 264(2):445–454CrossRefPubMedGoogle Scholar
  23. 23.
    Kanematsu M et al (2014) Whole-body CT angiography with low tube voltage and low-concentration contrast material to reduce radiation dose and iodine load. AJR Am J Roentgenol 202(1):W106–16CrossRefPubMedGoogle Scholar
  24. 24.
    Allen DW et al (2017) Risk prediction models for contrast-induced acute kidney injury accompanying cardiac catheterization: systematic review and meta-analysis. Can J Cardiol 33(6):724–736CrossRefPubMedGoogle Scholar
  25. 25.
    Tsai TT et al (2014) Validated contemporary risk model of acute kidney injury in patients undergoing percutaneous coronary interventions: insights from the National Cardiovascular Data Registry Cath-PCI Registry. J Am Heart Assoc 3(6):e1380CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Brar SS et al (2014) Haemodynamic-guided fluid administration for the prevention of contrast-induced acute kidney injury: the POSEIDON randomised controlled trial. Lancet 383(9931):1814–1823CrossRefPubMedGoogle Scholar
  27. 27.
    Putzu A et al (2017) Prevention of contrast-induced acute kidney injury by furosemide with matched hydration in patients undergoing interventional procedures: a systematic review and meta-analysis of randomized trials. JACC Cardiovasc Interv 10(4):355–363CrossRefPubMedGoogle Scholar
  28. 28.
    Er F et al (2012) Ischemic preconditioning for prevention of contrast medium-induced nephropathy: randomized pilot RenPro Trial (Renal Protection Trial). Circulation 126(3):296–303CrossRefPubMedGoogle Scholar
  29. 29.
    Bahrainwala JZ, Leonberg-Yoo AK, Rudnick MR (2017) Use of radiocontrast agents in CKD and ESRD. Semin Dial 30(4):290–304CrossRefPubMedGoogle Scholar
  30. 30.
    Lohrke J et al (2016) 25 years of contrast-enhanced MRI: developments, current challenges and future perspectives. Adv Ther 33(1):1–28CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Cowper SE et al (2000) Scleromyxoedema-like cutaneous diseases in renal-dialysis patients. Lancet 356(9234):1000–1001CrossRefPubMedGoogle Scholar
  32. 32.
    Grobner T (2006) Gadolinium—a specific trigger for the development of nephrogenic fibrosing dermopathy and nephrogenic systemic fibrosis? Nephrol Dial Transplant 21(4):1104–1108CrossRefPubMedGoogle Scholar
  33. 33.
    Pasquini L et al (2018) Gadolinium-based contrast agent-related toxicities. CNS Drugs 32(3):229–240. CrossRefPubMedGoogle Scholar
  34. 34.
    Knobler R et al (2017) European dermatology forum S1-guideline on the diagnosis and treatment of sclerosing diseases of the skin, Part 2: scleromyxedema, scleredema and nephrogenic systemic fibrosis. J Eur Acad Dermatol Venereol 31(10):1581–1594CrossRefPubMedGoogle Scholar
  35. 35.
    Becker S et al (2012) Application of gadolinium-based contrast agents and prevalence of nephrogenic systemic fibrosis in a cohort of end-stage renal disease patients on hemodialysis. Nephron Clin Pract 121(1–2):91–94CrossRefGoogle Scholar
  36. 36.
    DGfN (2018) Nephrogene Systemische Fibrose (NSF) Register. Zugegriffen: 27. März 2018Google Scholar
  37. 37.
    Gheuens E, Daelemans R, Mesens S (2014) Dialysability of gadoteric acid in patients with end-stage renal disease undergoing hemodialysis. Invest Radiol 49(8):505–508CrossRefPubMedGoogle Scholar
  38. 38.
    Birka M et al (2013) Sensitive quantification of gadolinium-based magnetic resonance imaging contrast agents in surface waters using hydrophilic interaction liquid chromatography and inductively coupled plasma sector field mass spectrometry. J Chromatogr A 1308:125–131CrossRefPubMedGoogle Scholar

Copyright information

© Springer Medizin Verlag GmbH, ein Teil von Springer Nature 2018

Authors and Affiliations

  1. 1.Klinik für NephrologieUniversitätsklinikum Essen, Universität Duisburg EssenEssenDeutschland

Personalised recommendations